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An Atmospheric Radiosounding Database for
Generating Land-Surface-Temperature Algorithms

1

2

Joan M. Galve, César Coll, Vicente Caselles, and Enric Valor3

Abstract—A database of global, cloud-free, and atmospheric4
radiosounding profiles was compiled with the aim of simu-5
lating radiometric measurements from satellite-borne sensors6
in the thermal infrared. The objective of the simulated data7
is to generate split-window (SW) and dual-angle (DA) algo-8
rithms for the retrieval of land surface temperature (LST)9
from Terra/Moderate Resolution Imaging Spectroradiometer10
(MODIS) and Envisat/Advanced Along Track Scanning Radiome-11
ter (AATSR) data. The database contains 382 radiosounding12
profiles acquired over land, with nearly uniform distribution of13
precipitable water between 0.02 and 5.5 cm. Radiative transfer14
calculations were performed with the MODTRAN 4 code for six15
viewing angles between 0◦ and 60◦. The resulting radiance spectra16
were convoluted with the response filter functions of MODIS17
bands 31 and 32 and AATSR channels at 11 and 12 µm. By18
using the simulation database, the SW algorithms adapted for19
MODIS and AATSR data and the DA algorithms for AATSR data20
were developed. Both types of algorithms are quadratic in the21
brightness-temperature difference and depend explicitly on the22
land surface emissivity. The SW and DA algorithms were validated23
with actual ground measurements of LST collected concurrently24
to MODIS and AATSR observations in a site located close to the25
city of Valencia, Spain, in a large, flat, and thermally homogeneous26
area of rice crops. The results obtained have no bias and a stan-27
dard deviation around ±0.5 K for the SW algorithms at nadir for28
both sensors. The SW algorithm used in the forward view results29
in a bias of 0.6 K and a standard deviation of ±0.8 K. The worst30
results are obtained in the other algorithms with a bias close to31
−1.0 K and a standard deviation close to ±1.1 K in the case of the32
DA algorithms.33

Index Terms—Advanced Along Track Scanning Radiometer34
(AATSR), land surface temperature (LST), Moderate Resolu-35
tion Imaging Spectroradiometer (MODIS), radiative transfer36
simulation.37

I. INTRODUCTION38

LAND SURFACE temperature (LST) is one of the most39

important inputs for studying the energy and mass balance40

between the surface and the atmosphere. In particular, LST41

is needed in meteorological prediction models [3], [18], in42

retrieving evapotranspiration through satellite data [11], [34],43

[44], in the evaluation of frost damage in crops [9], and in44

wildfire detection [8], [23]. Moreover, LST is considered an45
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indicator of global change [2] and desertification [22]. Thermal- 46

infrared (TIR) remote sensing is the unique way to obtain the 47

LST of large land areas with different spatial resolutions and 48

periodicities. 49

The derivation of LST from TIR satellite data requires the 50

correction for atmospheric and emissivity effects. More than 51

20 years of research have shown that split-window (SW) meth- 52

ods can be operationally used for the retrieval of accurate LSTs. 53

The SW methods use two spectral channels, which are usually 54

at 11 and 12 µm, and have been applied to NOAA/Advanced 55

Very High Resolution Radiometer (AVHRR) data [4], [6], [13], 56

[31]. Currently, this technique is the basis of the LST opera- 57

tional products of the EOS Terra–Aqua/Moderate Resolution 58

Imaging Spectroradiometer (MODIS) [42] and the Envisat/ 59

Advanced Along Track Scanning Radiometer (AATSR) [30]. It 60

is also proposed for future sensors such as the Visible Infrared 61

Imaging Radiometer Sensor [45]. 62

SW methods are physically based on the differential ab- 63

sorption principle [24], which is also applicable for TIR mea- 64

surements performed over the same target at two different 65

observation angles, which are typically nadir and off-nadir. 66

These are the so-called dual-angle (DA) methods. Both the 67

SW and DA methods express the LST as a linear or quadratic 68

combination of the brightness temperatures in the considered 69

spectral channels or viewing angles, with constant coefficients 70

having global validity. Coefficients could depend explicitly 71

on surface emissivity (usually, the mean emissivity and the 72

emissivity difference in the channels/angles are used), or dif- 73

ferent coefficient sets are given for each land-cover type. The 74

determination of the algorithm coefficients usually relies on the 75

use of simulated brightness temperatures. A set of atmospheric 76

profiles representative at global scale and a radiative transfer 77

model are used to predict the measurements of the satellite 78

sensor for different prescribed surface temperatures and emis- 79

sivities. A regression analysis of LST against the simulated 80

brightness temperatures and emissivities according to a prede- 81

termined model equation yields the coefficients (e.g., [6] and 82

[41]). Other approaches use actual brightness temperatures with 83

concurrent ground measurements of LST (matchups) to derive 84

the coefficients [20], [28], [29]. However, due to the limited 85

number of matchups used, these coefficients have only local 86

validity. 87

The coefficients obtained in the simulation procedure depend 88

closely on the database of atmospheric profiles used in the sim- 89

ulation. Atmospheric profiles could be standard atmospheres, 90

synthetic profiles (i.e., reanalysis data), or actual radiosounding 91

measurements. Anyhow, the profile database should cover the 92

global variability of the atmosphere as much as possible. In the 93
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Fig. 1. Plot of T0 versus W0 for the CLAR database rasiosoundings.

case of marine atmospheres and for derivation of sea surface94

temperature algorithms, the SAFREE radiosounding database95

[16] includes 402 cloud-free actual radiosoundings. It has a96

good latitudinal distribution, and the vertical column water97

vapor (W0) distribution is uniform up to 3.5 cm and has98

values up to 5 cm. The first-layer temperatures are comprised99

from close to 0 ◦C to around 30 ◦C. The first aim of this100

paper is to compile a database with similar characteristics in101

the case of land atmospheres. This database must be cloud-102

free, composed of actual atmospheric profiles taken over land,103

equally distributed in latitude, and with good temperature and104

W0 distribution, as shown in Fig. 1. This database is named105

Cloudless Land Atmosphere Radiosounding (CLAR).106

The second aim of this paper is to generate LST retrieval al-107

gorithms from the CLAR database simulations. We focused on108

the Terra/MODIS and Envisat/AATSR sensors. MODIS bands109

31 (10.78–11.28 µm) and 32 (11.77–12.27 µm) are suitable for110

the SW algorithm. Then, we generated one MODIS SW (MSW)111

algorithm. The AATSR channels at 11 and 12 µm can also be112

used for the SW algorithms. In addition, the scanning concept113

of AATSR allows the observation of the same target at two114

viewing angles. First, it is observed off-nadir (∼55◦) in the so-115

called forward view. About 120 s later, the target is observed at116

nadir (< 23◦) in the nadir view. Therefore, we have generated117

two AATSR SW algorithms for each view (ASWn for the nadir118

view and ASWf for the forward view) and two DA algorithms119

for each channel (ADA11 for the 11-µm channel and ADA12120

for the 12-µm channel).121

This paper is organized as follows. Section II presents the122

CLAR database, the simulation methodology, and the parame-123

terization. Section III shows the theoretical model and the dif-124

ferent LST algorithms generated. A sensitivity analysis of these125

algorithms with their error sources is presented in Section IV.126

In Section V, the algorithms are validated in a flat thermally127

homogeneous crop-field validation site to estimate the accuracy128

of the algorithms in real conditions. Finally, the conclusion is129

given in Section VI.130

II. CLAR DATABASE131

The CLAR database was constructed with atmospheric ra-132

diosoundings compiled from the Atmospheric Science De-133

partment, University of Wyoming (http:// weather.uwyo.edu/134

upperair/sounding.html). It contains 382 global land atmos-135

pheric radiosoundings acquired at day and night times and136

uniformly distributed at the global scale. CLAR has a good 137

distribution in W0 which is uniform up to 5.5 cm and extends 138

up to nearly 7 cm. The sondes are distributed in three latitude 139

ranges, with around 40% of radiosoundings placed at low 140

latitudes (0◦–30◦), another 40% at middle latitudes (30◦–60◦), 141

and 20% at high latitudes (> 60◦). The temperature of the 142

first layer of the radiosoundings (T0) ranges from −20 ◦C to 143

40 ◦C. All radiosoundings were taken from 2003 to 2006 and 144

were checked by means of a cloud test in order to be sure 145

that no cloud was included. François et al. [16] considered 146

that a radiosounding was cloudy when it had a level with a 147

relativity humidity (RH) higher than 85% or 80% depending 148

on the latitude. Since maritime aerosols are salt based, more 149

condensation occurs for lower RH in sea atmospheres than in 150

land atmospheres. Therefore, we can consider a more relaxed 151

RH threshold. Then, a radiosounding was considered cloudy 152

when one layer had an RH larger than 90% or when two 153

consecutive layers had an RH > 85%. A radiosounding was 154

considered foggy, and then rejected, when it had an RH > 80% 155

within the two first kilometers. The CLAR database is available 156

upon request to the authors. 157

Each radiosounding of CLAR was introduced into the mul- 158

tilayer radiative transfer model MODTRAN 4 [7], which is 159

distributed in 65 layers from ground level to 100 km. Seasonal 160

rural aerosol profile was assumed, with 24 km of visibility, 161

and standard profiles of fixed gases were used in the simula- 162

tions for each radiosounding. Atmospheric transmittance τλ(θ) 163

and upward and downward atmospheric radiances L↑
λ(θ) and 164

L↓
λ(θ) were simulated for a wavenumber interval from 600 to 165

3000 cm−1 (16.6–3.3 µm) in steps of 2 cm−1. Six at surface 166

observation angles θ were selected to simulate the transmittance 167

and the upward radiance. Wan and Dozier [40] proposed the 168

use of Gaussian angles (11.6◦, 26.1◦, 40.3◦, and 53.7◦) for their 169

good distribution. In this paper, we added nadir (0◦) and 65◦ for 170

completeness. The downwelling radiance was simulated also 171

for the Gaussian angles, plus 0◦, 65◦, 70◦, 80◦, 85◦, and 89◦ 172

for a better description at larger angles. The sky downwelling 173

irradiance F ↓
sky,λ was calculated as 174

F ↓
sky,λ =

2π∫
0

π/2∫
0

L↓
λ(θ) sin θ cos θdθdϕ. (1)

In order to select a surface temperature T according to the 175

radiosounding first-layer air temperature T0, several authors 176

proposed different intervals. For example, Yu et al. [45] took 177

T0 − 15 ≤ T ≤ T0 + 15; Ouaidrari et al. [26] took T0 − 10 ≤ 178

T ≤ T0 + 20; Pinheiro et al. [27] took T0 − 16 ≤ T0 ≤ T0 + AQ2179

16; and Wan and Dozier [40] took T0 − 20 ≤ T0 ≤ T0 + 20. 180

In our case, we made a statistical study of the difference 181

between the first-layer temperature (obtained through product 182

MOD08 which is a global eight-day collection of atmospheric- 183

profile retrieval MODIS product [35]) and the LST [obtained 184

through global eight-day LST and emissivity MODIS products 185

(MOD11, [42])] for 2005 to estimate a realistic difference 186

∆T = (T − T0). Forty-five different scenes were taken. In 187

each image, only land and cloud-free pixels were taken into 188

J.M. Galve
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Fig. 2. Histogram distribution of global ∆T = T − T0 for 2005. T is the
LST obtained through an eight-day global LST MODIS product (MOD11,
[42]). T0 is the temperature of the first-layer atmospheric profile obtained
through an eight-day global atmospheric profile product (MOD08, [35]).

account. Fig. 2 shows the histogram distribution of this differ-189

ence. The mean difference is ∆T = +3 K, and the standard190

deviation is ±9 K. Therefore, we selected T = T0 − 6, T0 −191

2, T0 + 1, T0 + 3, T0 + 5, T0 + 8, and T0 + 12 following a192

Gaussian distribution.193

III. SW AND DA ALGORITHMS FOR LST194

In this section, we describe the theoretical model of Coll and195

Caselles [13] for LST retrieval. Later, this model is used with196

the CLAR database simulations to obtain the coefficients of the197

LST algorithms with their specific characteristics. Finally, the198

algorithms obtained for AATSR and MODIS are presented.199

A. Theoretical SW Model of Coll and Caselles (1997)200

Starting from the radiative transfer equation applied to201

satellite-sensor measurements, assuming Lambertian surface202

reflection and linearizing the Planck function with respect to203

temperature, the SW model of Coll and Caselles [13] expresses204

the surface temperature (T ) as205

T = T1 + ∆ + A(T1 − T2) + α(1 − ε) − β∆ε (2)

where the inputs are the brightness temperatures Ti (i = 1206

and 2 being the channels at 11 and 12 µm, respectively) and207

the surface emissivity through the mean emissivity ε = (ε1 +208

ε2)/2 and the emissivity difference ∆ε = ε1 − ε2 in the two209

channels. It should be noted that (1) is also applicable to the210

DA algorithms if subindex i = 1 and 2 refer to nadir and off-211

nadir views, respectively. In (2), the atmospheric and emissivity212

effects on LST are decoupled through coefficients ∆ and A213

(atmospheric correction coefficients) and α and β (emissivity214

correction coefficients). The coefficients of (2) are given by215

A =
1 − τ1(θ)

τ1(θ) − τ2(θ)
(3)

∆ = − [1 − τ2(θ)]A
(
T ↑

a1 − T ↑
a2

)
(4)

which depend only on the atmosphere through the atmospheric 216

transmittance τi(θ) at observation angle θ and the effective 217

atmospheric temperature in the upward direction T ↑
ai (de- 218

fined from the upward atmospheric radiance according to 219

McMillin [24]). The emissivity coefficients are given by 220

α = (b1 − b2)Aτ2(θ) + b1 (5)

β =Aτ2(θ)b2 + α/2 (6)

with 221

bi =
Ti

ni
+ γi

(
ni − 1
ni

Ti − T ↓
ai

)
[1 − τi(0◦)] . (7)

where T ↓
ai is the effective atmospheric temperature in the down- 222

ward direction [24], and γi is the ratio between the downwelling 223

sky irradiance (1) and π times the at-nadir downward radiance 224

γi = F ↓
sky,i/πL

↓
i (0

◦). Coefficient ni is the exponent of the 225

power law approximation for the channel averaged Planck 226

function (Bi(T ) ≈ kiT
ni [31]), which depends on the channel 227

(n31 = 4.618 and n32 = 4.248 for MODIS channels 31 and 32 228

and n11 = 4.686 and n12 = 4.248 for AATSR channels at 11 229

and 12 µm). More details on the derivation of (2) can be found 230

in [12]. 231

B. AATSR and MODIS Algorithms 232

The theoretical expressions of the coefficients (3)–(7) cannot 233

be used in an operational LST algorithm. Instead, we calculated 234

the coefficients from brightness temperatures simulated from 235

the CLAR database. As pointed out before, coefficients A 236

and ∆ depend only on the atmosphere but not on the surface 237

emissivity. In addition, for a black-body surface (ε = 1 and 238

∆ε = 0), (2) yields 239

T = T1 + ∆ + A(T1 − T2). (8)

Therefore, coefficients A and ∆ can be obtained from the 240

regression of T − T1 against T1 − T2, with the brightness 241

temperatures simulated for the black-body case. According to 242

Coll and Caselles [13], the regression should be quadratic rather 243

than linear, which implies that coefficient A is a linear function 244

of T1 − T2 and that ∆ is a constant 245

A = a1 + a2(T1 − T2) (9)

∆ = a0 (10)

where a0, a1, and a2 are the constant values for a particular 246

channel or angular combination, and they are referred to as the 247

atmospheric coefficients hereafter. They can be applied over 248

any nonblack-body surface, provided that the emissivity effects 249

are accounted for through coefficients α and β for which it is 250

necessary to calculate bi (7). These coefficients depend on the 251

surface temperature and the atmospheric properties. They were 252

calculated for the radiosoundings of the CLAR database for 253

J.M Galve
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TABLE I
COEFFICIENTS FOR bi ESTIMATION (11) FOR ALL CHANNELS WITH THEIR STATISTICAL ERRORS. ADJUSTMENT ERROR (σb) AND

CORRELATION COEFFICIENT (R2) FOR EACH CHANNEL ARE SHOWN IN THE LAST TWO LINES

Fig. 3. Atmospheric transmittance τ2 plotted against the path column water
vapor content for the MODIS simulated data.

the surface temperatures corresponding to each profile. Then,254

the calculated coefficient bi was parameterized in terms of Ti255

and W0. It should be noted that in the cases of SW algorithms256

in nadir view, it is considered the path water vapor content257

W = W0/ cos θ. Taking this into account and according to Coll258

and Caselles [13], we can express bi coefficients as259

bi = (MiW + Ni)Ti + PiW + Qi (11)

where coefficients Mi, Ni, Pi, and Qi depend on the channel260

or view angle considered and were obtained from regression261

on the calculated bi (see Table I). Finally, the transmittance262

τ2 required for α and β [(5) and (6)] can be adjusted to a263

function of path or vertical water vapor content, depending264

on the algorithm generated, through a quadratic expression, as265

shown in Fig. 3266

τ2 = t0 + t1W + t2W
2 (12)

where coefficients t0, t1, and t2 depend on the channel/angle267

and were obtained from regression on the transmittances simu-268

lated in CLAR (see Table II).269

Four different algorithms were generated for AATSR. In270

the nadir mode, viewing angles are θ < 23.5◦, and then, to271

generate ASWn, we used simulations at the observation angles:272

0◦, 11.6◦, and 26.1◦. ASWf was generated from simulations273

obtained only for 53.7◦. The two AATSR DA algorithms were274

generated from simulations obtained for two pairs of observa-275

tion angles: 0◦–53.7◦ and 11.6◦–53.7◦, in the AATSR channels276

at 11 µm (ADA11) and 12 µm (ADA12).277

Although MODIS at surface viewing angle reaches 65◦, the 278

algorithm for MODIS, the MSW, was generated from simu- 279

lations obtained for the observation angles: 0◦, 11.6◦, 26.1◦, 280

and 40.3◦. Since there are few studies on the angular variation 281

of emissivity for land surfaces and due to the degradation of 282

regression results for angles larger than 45◦, in this paper, we 283

have restricted to θ < 45◦ to generate the MSW algorithm. 284

With all these conditions, we can simulate sensor measure- 285

ments for each algorithm. Thus, we have 2674 different cases 286

for each geometrical configuration. Based on (2), and (8)–(10), 287

all the algorithms generated can be expressed as 288

T = T1+a0+a1(T1−T2)+a2(T1−T2)2+α(1−ε)−β∆ε.
(13)

The necessity of determining atmospheric correction coeffi- 289

cients (a0, a1, and a2) is shown in Fig. 4, which plots the dif- 290

ferences LST-T1 versus the brightness-temperature differences 291

(T1 − T2) for the MSW case. A quadratic relationship between 292

LST and (T1 − T2) is clearly observed, which justifies the 293

parameterization of coefficient A proposed in (9). Atmospheric 294

coefficients with their errors, adjustment error (σAC) for all 295

algorithms, and correlation coefficients (R2) are shown in 296

Table III. In order to evaluate the accuracy of these coefficients 297

in different W0 cases, we compare the temperature prescribed 298

in the simulation T , with the LST obtained by applying (8)–(10) 299

with the coefficients of Table III to all simulated cases. Fig. 5 300

shows the difference between T-LST in front of W0. This shows 301

that the algorithm works with better accuracy for atmospheres 302

with low-to-moderate column water vapor content, the scatter- 303

ing being larger for W0 > 4 cm. 304

Fig. 6 shows the values of α and β coefficients versus W 305

for the atmospheric profiles and surface temperatures of the 306

CLAR database. It shows that such coefficients have a clear 307

dependence on the atmospheric moisture. Then, the α and β 308

coefficients can be calculated through a simpler formulation in 309

which only the dependence on the atmospheric water content 310

W is considered. The coefficients α and β calculated from the 311

CLAR radiosoundings and (5)–(7) can be approximated to 312

α =α0 + α1W + α2W
2 (14)

β =β0 + β1W (15)

where the coefficients depend on the combination of channels/ 313

angles used (see Table IV). 314
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TABLE II
COEFFICIENTS FOR τ2 ESTIMATION (12) FOR ALL ALGORITHMS WITH THEIR STATISTICAL ERRORS. ADJUSTMENT ERROR (στ ) AND

CORRELATION COEFFICIENT (R2) FOR EACH ALGORITHM ARE SHOWN IN THE LAST TWO LINES

Fig. 4. Plot of T − T1 versus the brightness-temperature difference T1 − T2

for the MSW case.

From this point, we can consider two alternative ways to315

obtain α and β, either with dependence on Ti and W or only316

on W . In version 1, coefficients α and β are obtained by using317

(5), (6), (11), and (12) and the coefficients for estimating bi and318

τ2 given in Tables II and III. In version 2, coefficients α and319

β are obtained by using (14) and (15) and the coefficients of320

Table IV.321

IV. SENSITIVITY ANALYSIS322

The accuracy of the algorithms is evaluated with a sensitivity323

analysis. The theoretical error of T is expressed as a combina-324

tion of two main terms: one due to model accuracy δ(T )M and325

the other due to error propagation δ(T )P326

δ(T ) =
[
δ(T )2M + δ(T )2P

]1/2
(16)

where327

δ(T )M =
[
σ2

AC + [(1 − ε)σα]2 + [∆εσβ ]2
]1/2

(17)

δ(T )P =

[∑
i

[
∂T

∂xi
δxi

]2
]1/2

. (18)

σAC is the error of atmospheric-correction-coefficient adjust-328

ment, and σα and σβ are the errors of the α and β coefficient329

adjustments, respectively, which are weighted by the mean330

emissivity and the emissivity difference. The error-propagation331

inputs xi are the brightness temperature, the emissivity and332

column water vapor content, and their respective errors (δxi).333

We have used the following values of the different vari-334

ables to estimate the errors of (18). Brightness-temperature335

acquisition from on-board sensor has a noise equivalent dif- 336

ference of temperature (NE∆T ), which is δTi = 0.05 K for 337

MODIS and AATSR [1], [37]. The variability of ε and ∆ε 338

is the principal drawback to obtain the LST. In order to esti- 339

mate the error associated to emissivity, different considerations 340

have been made. First, different techniques can be used to 341

assess the land surface emissivity from satellite-borne sensors, 342

such as the temperature-emissivity-separation algorithms [17], AQ3343

temperature-independent spectral-indices-based methodologies AQ4344

[5], [25], or algorithms based on the use of vegetation indices 345

[38], [39] among others. In all cases, emissivity can be assessed 346

with an error around ±0.01 [10], which is a value that can be 347

used for δε (and δ∆ε =
√

2δε). In addition, to estimate the 348

error associated to these parameters, several ε and ∆ε values 349

are used for each. Rubio et al. [32] measured emissivities 350

for vegetated and soil samples. Emissivity varies from 0.942 351

to 0.991 for vegetation and from 0.903 to 0.997 for soils. 352

Pinheiro et al. [27] estimated the emissivity values for AVHRR 353

channels 4 and 5 for the FAO soil classes and vegetation types, 354

showing that ε varies from 0.968 to 0.990 and ∆ε varies from 355

−0.014 to 0.009. Since the AATSR channels are similar to 356

AVHRR, these values can be used for the AATSR algorithms. 357

In the case of MODIS, Snyder and Wan [36] obtained the emis- 358

sivities for the International Geosphere–Biosphere Programme AQ5359

classes, from which ε varies from 0.969 to 0.990 and ∆ε varies 360

from −0.006 to 0.011. Then, for ASWn and MSW, we took five 361

emissivity values, i.e., 0.970, 0.975, 0.980, 0.985, and 0.990, 362

and five emissivity difference values, i.e., −0.01,−0.005, 0, 363

0.005, and 0.01. However, in the cases of ASWf, ADA11, and 364

ADA12, an estimation of the directional variation of emissivity 365

is needed. Snyder and Wan [36] obtained that ε and ∆ε vary 366

in off-nadir view (∼60◦) from ε = 0.969 to 0.998 and from 367

∆ε = −0.007 to 0.008. Then, for ASWf, we added one mean 368

emissivity value ε = 0.995. The same values were used for 369

ADA11 and ADA12. 370

Coefficients α and β calculated by using version 1 were com- 371

pared with theoretical coefficients obtained by using (5)–(7). 372

The resulting root-mean-square error (rmse) was compared 373

with σα and σβ of the adjustment of version 2 (Table IV). For 374

coefficient α, the rmse of version 1 varies between 3 and 4 K in 375

all algorithms in front of σα of version 2 that varies between 4 376

and 6 K. Coefficient β had a larger difference between both 377

versions. The rmse of version 1 ranges from 6 K (ASWn, 378

ASWf, and ADA11) to 10 K (ADA12 and MSW), and σβ’s 379

for version 2 (Table IV) are 9 K for ASWn and ADA11, 11 K 380

for ASWf, 13 K for ADA12, and 15 K for MSW. In order to 381

estimate the effect of these errors in δT , we must choose the 382

values of ε = 0.980 and ∆ε = 0.005. Then, with these values 383



IE
EE

Pr
oo

f

6 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 46, NO. 5, MAY 2008

TABLE III
ATMOSPHERIC COEFFICIENTS WITH THEIR STATISTICAL ERRORS FOR ALL ALGORITHMS. ADJUSTMENT ERROR (σAC) AND

CORRELATION COEFFICIENT (R2) FOR EACH ALGORITHM ARE SHOWN IN THE LAST TWO LINES

Fig. 5. Plot of T-LST versus the W0 for the MSW case.

Fig. 6. (Gray circle) α and (black cross) β coefficients for the MSW algorithm
against the path column water vapor content W (in centimeters).

and the errors of both versions previously given, we obtained384

δT = ±0.09 K for version 1 and δT = ±0.12 K for version 2.385

The difference between these two versions is less than the386

NE∆T (±0.05 K). Then, since there is no significant difference387

between them, we chose the version 2 of the algorithms for388

simplicity.389

In order to evaluate the effect of all these error sources in390

different atmospheric conditions, they have been evaluated for391

different W ’s (1, 2, 3, 4, and 5 cm), considering a typical error392

of 10% [35]. However, this error may be underestimated for low393

W cases, for which an error of ±0.4 cm could be more realistic.394

Therefore, we estimated the error in temperature resulting from395

both cases of δW and selected the largest temperature error.396

For each W , different values of T1 − T2 and Ti must be taken397

into account for each algorithm. These are the typical values 398

from the simulation of CLAR for the different W ’s considered. 399

Table V shows the values taken. 400

Fig. 7 shows the error in LST due to the different sources 401

in the case of MSW and ADA11. The other algorithms yielded 402

similar results. The maximum error in LST for MSW is close to 403

2.1 K, and for ADA11, it is close to 1.6 K, decreasing with W 404

in both cases. The main error source is emissivity; thus, a good 405

knowledge of this quantity is necessary. The adjustment error 406

of the coefficients, which is constant, is the other significant 407

source of error. Finally, W and brightness temperature error 408

are less important. In fact, these errors are negligible for small 409

values of W . In Table VI, we present the error for each source 410

and algorithm (version 2), taking into account all the cases with 411

different values of W , ε, and ∆ε considered in this section. 412

Similar results were obtained for version 1 of the algorithms. 413

V. VALIDATION 414

The errors presented in the previous section are only a 415

theoretical estimation. A comparison between actual ground 416

measurements of LST and satellite sensor estimates is needed 417

to evaluate the error of these algorithms in real conditions. Few 418

LST validation studies can be found in the literature (e.g., [14], 419

[15], [19], [28], and [43]). The validation of LST algorithms is 420

only possible for certain land surfaces with thermal homogene- 421

ity at various scales, from field of view of ground instruments to 422

several kilometers. The preferable validation targets are inland 423

waters or densely vegetated surfaces. 424

Coll et al. [14], [15] presented a flat and thermally homo- 425

geneous area of rice crops located close to Valencia, Spain, 426

where ground LST measurements were taken concurrently with 427

daytime and cloud-free MODIS and AATSR overpasses during 428

the summers of 2002–2005. Moreover, a new campaign in 429

2006 brings new validation measurements. Table VII shows 430

all the dates with their ground temperature Tg, W0, θ, and 431

brightness temperature Ti of both sensors. Ground temperature 432

was acquired by using four intercalibrated TIR radiometers 433

(two CIMEL CE312 and two Everest). In order to capture 434

the spatial variability of surface temperature, each radiometer 435

took measurements following different transects in the same 436

area of 1 km2. The temporal variability was considered, taking 437

measurements 30 min around sensor overpasses, but only the 438

average of 3 min around sensor overpass was considered as a 439

ground measurement. All measures were corrected for emissiv- 440

ity effect. More details on the measurement procedure can be 441

found in [14] and [15]. 442
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TABLE IV
COEFFICIENTS FOR α AND β ESTIMATION [(14) and (15)] WITH THEIR STATISTICAL ERRORS FOR ALL ALGORITHMS. ADJUSTMENT

ERROR (σα AND σβ , RESPECTIVELY) AND CORRELATION COEFFICIENT (R2) FOR EACH ALGORITHM ARE SHOWN

TABLE V
VALUES OF ∆T AND Ti USED FOR THE SENSITIVITY ANALYSIS

Fig. 7. Error in LST due to the different sources in the case of (a) MSW and
(b) ADA11.

To validate the MODIS algorithms, W0 is obtained from443

MODIS atmospheric profile product (MOD07, [35]). For444

AATSR, a MOD07 product can be found in all cases with445

spatial concurrence and temporal difference less than 1 h, which446

can be used to validate our algorithms. The mean W0 and447

standard deviation in all days was (2.4±0.5) cm.448

Rice crops with full cover have a high emissivity and a low449

spectral variation. Surface emissivity was measured in the field450

using the box method [33] for the four-band CE312 CIMEL451

TABLE VI
ERRORS IN LST FOR ALL ERROR SOURCES FOR THE ALGORITHM OF

VERSION 2 [WHEN α AND β COEFFICIENTS ARE OBTAINED BY

USING (14) AND (15)]. THE LAST COLUMN SHOWS THE

TOTAL LST ERROR OF THE ALGORITHM

radiometer which has two bands that are similar to the AATSR 452

channels at 11 and 12 µm. The measured mean emissivity 453

and the spectral emissivity difference for AATSR nadir view 454

(ASWn) were ε = 0.983 and ∆ε = 0.005 [15], respectively. 455

Those measurements are valid for nadir view only. Measure- 456

ments of angular variations of emissivity in natural surfaces 457

are scarce. Lagouarde et al. [21] measured the differences 458

between nadir and off-nadir temperatures in several land sur- 459

faces. Specifically, for full cover alfalfa crops with the absence 460

of water stress (i.e., similar to the rice crops), the difference 461

between nadir and off-nadir (∼60◦) temperatures was within 462

0.5 K. Such a decrease of temperature is equivalent to an 463

emissivity decrease about ∼0.01 between both observations. 464

For this reason, we took the mean emissivity and the spectral 465

emissivity difference for ASWf as ε = 0.973 and ∆ε = 0.005, 466

respectively. Analogously, we took ε = 0.980 and ∆ε = 0.010 467

for ADA11 and ε = 0.975 and ∆ε = 0.010 for ADA12. The 468

emissivity for MSW is obtained through the LST and the emis- 469

sivity operational product of MODIS (MOD11, [42]), which is 470

based on a land-cover classification [35]. For the rice-crop area, 471

it yielded mean emissivity and spectral emissivity difference of 472

ε = 0.983 and ∆ε = −0.003. Ti are obtained as the mean of 473

3 × 3 pixels centered in our validation site. Table VIII shows 474

the obtained LST with all algorithms, and Table IX presents the 475
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TABLE VII
VALIDATION DATES WITH THEIR GROUND TEMPERATURE Tg, W , θ, AND BRIGHTNESS TEMPERATURE Ti OF

BOTH SENSORS (COLL et al. [14], [15]). NEW DATES ARE MARKED WITH ∗

statistics of the difference between the ground temperature and476

the LST. Although there are few data, skewness and kurtosis-3477

factors are always less than unity, which means that the differ-478

ences are normally distributed. Similar results are obtained for479

algorithms in version 1.480

ASWn and MSW have an rmse around 0.5 ◦C. ASWf is theAQ6 481

SW algorithm with the largest rmse (±1.0 K); this is because482

it has large bias (0.6 K) and standard deviation (σ = ±0.8 K).483

The rmse of DA algorithms is near ±1.5 K in both cases. They484

show an underestimation of LST close to 1.0 K and a standard485

deviation larger than ±1.0 K. These errors make necessary486

further work in the study and characterization of the angular487

variation on emissivity. On the other hand, such errors could be 488

also due to the differences in the atmospheric profiles along the 489

paths of nadir and off-nadir views of AATSR. 490

VI. CONCLUSION 491

The CLAR database was presented to generate the LST 492

retrieval algorithms from satellite sensor data. The radiosound- 493

ings of CLAR are well distributed in W being uniform up to 494

5.5 cm. They also have a good distribution in low, middle, 495

and high latitudes (40%, 40%, and 20%, respectively). The 496

first-layer temperature T0 ranges from −20 ◦C to 40 ◦C. Five 497
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TABLE VIII
LST FOR ALL THE VALIDATION DATES OBTAINED FOR THE ALGORITHMS GENERATED

different LST algorithms were generated with this database and498

using two different techniques: SW (one for MODIS and two499

for AATSR) and DA for AATSR. Different versions to obtain500

α and β coefficients were generated, obtaining similar results.501

Then, the fitting of α and β coefficients as a function of W502

could be a good approximation.503

A sensitivity analysis was performed to evaluate all error504

sources for several values of mean emissivity and emissivity505

difference and W . The larger error for SW technique was506

±1.4 K (ASWf), and the minimum error was ±0.8 K (ASWn),507

whereas MSW had an error of ±0.9 K. In the case of DA,508

ADA11 had the minimum error (±0.7 K), and ADA12 had the509

largest error (±1.0 K).510

The validation database of the Valencia test site (Coll et al. 511

[14], [15]) was used to validate all these algorithms. The data- 512

base was increased with new ground measurements and sensor 513

data for 2006. The best results in terms of LST error were for 514

ASWn (±0.5 K) and MSW (±0.4 K). These results confirm the 515

conclusions shown by Coll et al. [14], [15]. The DA algorithms 516

showed an error close to ±1.5 K. Reasons for this discrepancy 517

could be errors in the angular variation of surface emissivity. 518

In fact, as shown in the sensitivity analysis, the main error 519

source in these algorithms is due to the emissivity uncertainty. 520

Moreover, the effect of the different spatial resolution and the 521

difference in the atmospheric profiles between the nadir and off- 522

nadir views of AATSR may be other sources of error. 523
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TABLE IX
STATISTICS OF THE DIFFERENCE BETWEEN GROUND TEMPERATURE Tg

AND LST T FOR THE ALGORITHMS GENERATED WITH VERSION 2.
THE SIXTH LINE IS THE PERCENT OF CASES WHICH ARE

INCLUDED IN THE RANGE x̄ ± s.d. FOR EACH CASE
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