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ABSTRACT

The accuracy of land surface temperatures (LSTsyatefrom the Advanced Along-Track
Scanning Radiometer (AATSR) was assessed in asiiesin Valencia, Spain from 2002-
2008. AATSR LSTs were directly compared with coment ground measurements over
homogeneous, full-vegetated rice fields in the emtwnal temperature-based (T-based)
method. We also applied the new radiance-basedagee) method over bare soil and water
surfaces, where ground LST measurements were raitable. In the R-based method,
ground LSTs are simulated from AATSR brightnessperatures in the 1uim band and
radiative transfer simulations using surface emigsdata and atmospheric water vapor and
temperature profiles. The accuracy of the R-bagsedngl LSTs depends on how well the
profiles used in simulations represent the actuahoaphere at the time of AATSR
observations. This can be checked with the diffeeé(T11-T12) between the actual AATSR
and the profile-based simulated difference in theathd 12um brightness temperatures;{T
and T, respectively). We found that for -0.6 8d1;-T12)<0.6 K, the R-based LSTs were

accurate within £1.0 K and can be used for LSTdadlon. For the data analyzed here, the
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AATSR operational algorithm overestimated the gbw$T by 2 to 5 K, showing that the
auxiliary data utilized within the retrieval schenfeiome classification and fractional
vegetation cover maps at 0.5°x0.5° resolution) Ishbe improved and provided at the same
spatial resolution as the AATSR data (1%nWhen the AATSR algorithm was optimized
with biome and fractional vegetation cover selecedording to the nature of each surface,
LST errors showed negligible average biases ané=xits5 K for full vegetation and water,
and +1.1 K for bare soil. Furthermore, we checked adternative algorithm explicitly
dependent on emissivity, which provided accuratdd $or all the surfaces studied, with
small biases, rmse from 0.4 to £0.6 K and most le8brs within £1.0 K. The algorithm
requires monthly emissivity maps at 1 ¥mwhich can be derived from classification and
fractional vegetation cover estimated from optiB#&ATSR data. The results of this paper
show the high LST accuracy achievable with AATSRada ideal conditions. While it is
necessary to establish and maintain highly homagen&-based validation sites, the R-based
method provides an alternative for the semi-openali long-term evaluation of LST
products at global scale, since it is applicablersurfaces with varied LST and atmospheric

regimes where ground LST measurements are nobfeasi
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1. INTRODUCTION

Land Surface Temperature (LST) is a key parameteneteorological, climatological and
hydrological studies since it results from the pbgisinteractions in the surface-atmosphere
system, including the energy and water fluxes (Asole et al., 1997; Sanchez et al., 2008).
LST is sensitive to local atmospheric conditioasid cover type, soil moisture and vegetation
water stress. Therefore it can be used to monisedification, deforestation and climate
change (Allen et al.,, 1994; Lambin and Ehrlich, 209Thermal infrared (TIR) remote
sensing is probably the most suitable techniquebtain LST measurements at regional and
global scales. Currently, there are a number of #Bdducts derived from TIR remote
sensing observations at different spatial scalestemporal periodicities. Examples are the
products generated from the Moderate Resolutionginga Spectroradiometer (MODIS)
(Wan, 2008), the Atmospheric Infrared Sounder (AIRRisskind et al., 2003), the Advanced
Spaceborne Thermal Emission and Reflection radiem@&STER) (Gillespie et al., 1998)
and the Meteosat Second Generation (MSG) Spinnintguiced Visible and Infrared Imager

(SEVIRI) (PUM_LST, 2008).

The Advanced Along-Track Scanning Radiometer (AAT $Rewellyn-Jones et al., 2001)
onboard the European Space Agency (ESA) satellingsit provides an operational LST
product at 1 krh resolution, which is currently included in the k2 AATSR data
(ATS_NR_2P). The operational LST algorithm is adgaplied to predecessors ATSR-1 and
ATSR-2, then providing LSTs back to 1991. The AAT&Rs two on-board calibration
targets, low-noise detectors and mechanical codherts provide high radiometric accuracy
and stability to the TIR data (better than 0.05df the 11 and 12im bands). Therefore
instrumental error in AATSR LST estimation will beery small. The conical scanning

mechanism of AATSR gives a dual-view of the Earthigface, first in the forward view at
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zenith angles about 55°, and 150 s later in th& maav at zenith angles from 0° to 21.7°. The
nominal spatial resolution of AATSR is 1 km x 1 kmthe nadir view and 1.5 km x 2 km in
the forward view, with a swath width of about 500.kEquator crossing time is 10:00 a.m.

local time (descending node) and revisit time QU3 days.

The operational AATSR LST product is based on thié-window technique using the 11
and 12um bands at nadir view (Prata, 2002a). Differens sétsplit-window coefficients are
used for 14 land cover classes or biomes predefmedstatic classification map, and tuned
with monthly fractional vegetation cover maps basadtlimatology. Both classification and
fractional vegetation cover maps are implementedh& operational algorithm at spatial
resolution of 0.5°x0.5° in longitude and latitudilae generation of LST products involves the
correction of the satellite-observed radiances dtmospheric absorption and emission
(mainly due to water vapor) and non-unity of lanuface emissivity. This is a challenging
problem because of the water vapor and surface seutys variability. It is therefore
necessary to assess the accuracy and precisibe pfaducts to provide LST users with data
quality information. Long-term validation is regedr to identify possible deficiencies and

subsequently introduce improvements in the algorsth

Since the launch of Envisat in 2002, the AATSR L@Dbduct has been validated with

concurrent ground LST measurements performed owarogeneous surfaces such as rice
fields with full vegetation cover in Valencia, Spand inland waters in Lake Tahoe, USA
(Coll et al., 2005, 2006, and 2009a). For bothssiteesults showed that the product
overestimated the in situ LSTs by 3 to 4 K. ThgdakST errors were attributed to the spatial
resolution of the classification and fractional g&gion cover maps (0.5°), which is too coarse

to resolve the land surface heterogeneity at thd®® 1 kn? scale. Noyes et al. (2007a)
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observed both positive and negative biases, witif 3R being typically warmer (colder) in
the summer (winter), which was attributed to thgoathm’s sensitivity to atmospheric water
vapor, temperature and LST. In order to addressatime problems, Noyes et al. (2007hb)

proposed several modifications in the current dyperal algorithm.

The objective of this paper is to show the longrterccuracy assessment of AATSR derived
LSTs at the Valencia test site in the period 200@& We checked not only the operational
LST product but also the impact of using more appate values for the auxiliary parameters
over the test site, and the performance of anraltee split-window algorithm with explicit
emissivity dependence applicable to AATSR (Galvealet2008). The overall aim of such

validations is to stress the need for modificationthe current AATSR LST processor.

Two types of validation methods were used in thes@nt study. First, we show conventional
temperature-based (T-based) validation, where cosmuground LST measurements were
directly compared with AATSR retrievals over homiogeus rice crops with full vegetation

cover, much in the same way as in Coll et al. (2Q006 and 2009a). Due to the dissimilarity
in the spatial scale between ground instruments satdllite measurements, only highly
homogeneous surfaces are suitable for T-basedatialig which reduces the number of
biomes and climatic conditions available for a megiul LST assessment. Therefore, we
propose the new radiance-based (R-based) method &\thLi, 2008) that has been used for
MODIS LST validation (Wan, 2008; Coll et al 2009&)d does not require ground LST
measurements. Instead, ground LSTs are calculated $atellite brightness temperatures
through radiative transfer simulations using swefaemissivity data, and atmospheric
temperature and water vapor profiles. Since homeges sites in 10-1@m emissivity are

more frequent than homogeneous sites in LST, thaded method can be potentially applied
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to a larger number of sites with different LST atchospheric regimes. The R-based method
is not a validation method in strict sense, becaudees not rely on independently measured
LSTs. However, it can be an alternative or complene the T-based method when ground

LST measurements are not feasible.

The paper follows with a brief description of theecational AATSR LST algorithm and the
alternative explicit emissivity-dependent algorithin section 3, the T-based validation
results for full vegetation cover are presented disdussed. Section 4 shows the principles
and sensitivity analysis of the R-based method, thedvalidation results for two different
biomes (bare soil and lake). Finally, the main ¢asions of the paper are presented in

section 5.

2. LST RETRIEVAL FROM AATSR

LST can be retrieved from AATSR brightness tempeeat in the 11 and 32n bands, nadir
view using the split-window technique. The AATSRrvard view is not used due to
difficulties in accounting for angular effects @mtperature and emissivity, the different field
of view and the non-simultaneity of the two viewdiich may have an important impact over
heterogeneous land surfaces (Prata, 2002a; Calll, @006). The application of split-window
algorithms requires that the characteristics ofdsinéace must be well known. It can be done
through explicit dependence on surface emissivatia cit the two bands considered (Becker
and Li, 1990; Wan and Dozier, 1996; Coll and Caselll997). Another possibility is to
derive specific sets of algorithm coefficients fdifferent land cover biomes weighted by
fractional vegetation cover (Kerr et al., 1992)eTdperational AATSR LST algorithm (Prata,
2002a) adopted the latter approach. Thereforeds amt depend explicitly on emissivity, but

accounts implicitly for surface emissivity effedctwough biome-dependent coefficients and
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fractional vegetation cover. The operational aliponi is described next and an alternative

algorithm with explicit emissivity dependence iggented in section 2.2.

2.1. Operational AATSR LST algorithm

The algorithm expresses the LST (T) as a nearBalincombination of the brightness
temperatures in the 11 and 1@2n bands, T; and T, with coefficients determined by
regression over simulated brightness temperatunes depending on the biome (i), the

fractional vegetation cover (f), the precipitablater (W) and the satellite zenith viewing

angle 0):

T=aiw+bi(TirT1)" + (b + G)T12 (1)

a;w = 0.4[sed@)-1]W + fa,; + (1-f) a;
br; = f by + (1-f) by
ci =fa,i+ (1-f) G

n = 1/cos@/5)

Coefficients a, b, and c of Eq. (1) were determifogdL3 land biomes defined in Dorman and
Sellers (1989) plus a lake class (i=1 to 14), amdshown in Table 1 (Prata, 2002b). For each
land cover biome, two separate sets of coefficiargsspecified for the fully vegetated surface
(subscript v) and for the bare surface (subschptwhich are weighted by the fractional
vegetation cover f. For some biomes (i=4, 7, 9,11%,13, and 14), coefficients are identical
for the vegetated and bare surface, which makeslgwithm insensitive to f. For the lake

class, different coefficients are given for day aight. In Eq. (1), all temperatures are in °C.

Since the algorithm only uses the nadir vie®x41.7°), the impact of W on the LST

calculated from Eq. (1) is rather small, e.g., & Idifference <0.03 K for a W variation of 1
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cm. For the same reason, coefficient n is closenity and the algorithm is nearly linear on
T11-T12. Given that 1<n<1.0029, the difference with thellL&erived using n=1 in Eq. (1) is
between 0 and 0.03 K for;iFT1,=3 K. Similarly, the impact oB in the algorithm, both

through coefficients taw and n, is small. Takin§=0° instead of the correct angle yields

differences in the calculated LST less than 0.d6idN=3 cm.

The ancillary data necessary for the applicatiothefalgorithm (i, f and W) are tabulated at
spatial resolution of 0.89.5° in longitude/latitude. Land biomes are detegdifrom global

classification and are static. The fractional vageh cover has monthly variability, and is
obtained from Dorman and Sellers (1989) and ames# of the “greenness” derived from
global normalized difference vegetation index frime International Satellite Land-Surface
Climatology Project (ISLSCP). Precipitable watetadare taken from the NASA Water
Vapor Project (NVAP) global climatology at monthiytervals. The target accuracy of the
LST product is £1.0 K at nighttime and £2.5 K ayti@me. For more details on the algorithm

and the operational implementation see Prata (9002a

As pointed out in previous validation studies (Gatllal., 2005, 2006, and 2009a), the 0.5°
resolution of the ancillary data is too coarsedecoant for the natural heterogeneity of LST at
the AATSR scale. Noyes et al. (2007b) and Colllef2909a) also noted the high sensitivity
of the LST retrievals to the fractional vegetaticover. Noyes et al. (2007b) proposed to
increase the resolution of the biome and f mapk-3oknt, to use the GLOBCOVER biome

map derived from Envisat/Medium Resolution ImagiSgectrometer (MERIS), and to

increase the accuracy of the fractional cover bypducing an observational component, e.g.,

estimating f by using vegetation indices deriveahrfrthe AATSR optical bands.
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2.2. Explicit emissivity-dependent LST algorithm

As an alternative, the split-window method can hmpliad with algorithms explicitly
dependent on the surface emissivity at the 11 @dni AATSR bands, namely the mean
emissivity €=(€11+€12)/2) and the band emissivity differencAe€e;i-€15), which are the
physical magnitudes accounting for the effect afllaurface biome and fractional vegetation
cover on TIR measurements. This is the approacptaddy the generalized split-window
algorithm (Wan and Dozier, 1996) used to genefageMODIS LST products MOD11 L2
(Terra) and MYD11 L2 (Aqua) (Wan, 2008), and by thMSG-SEVIRI LST product
(PUM_LST, 2008). This approach is feasible sineedmissivity values of natural surfaces at
10-13 um show relatively small variability at global scalaccording to Pinheiro et al.
(2004),¢ andAe range from 0.968 to 0.990 and from -0.014 to 0,0€8pectively, for the
Advanced Very High Resolution Radiometer (AVHRRhts 4 and 5, which are comparable
to the AATSR bands. Similarly, Snyder et al. (198&8)nde varying from 0.969 to 0.990 and
Ae from -0.006 to 0.011 for the MODIS split-window rais 31 and 32. However, the
sensitivity of LST to these small emissivity chasgean be large (typically +0.8 K for

uncertainty of £0.010 in botty; ande;»; Galve et al., 2008).

The explicit emissivity-dependent split-window alglom proposed here is based on the
model of Coll and Caselles (1997) particularized AATSR as described in Galve et al.

(2008). It can be written as

T =T+ 0.02 + 0.782(Fi-T1o) + 0.302(T1-T1o)*+

+ (1-€)[53+1.13(W/c08)-1.023(W/co8)?] - Ag[79-11.06(W/coB)] (2)

The algorithm coefficients were obtained from réda transfer simulations of AATSR

brightness temperatures using a database of 38mheotal, cloud-free radiosonde profiles
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with global coverage and precipitable water up tont (Galve et al., 2008). The quadratic
dependence oniFTi, accounts for the increase of the atmospheric @dtem for large
amounts of atmospheric water vapor. The algoritemedds explicitly on precipitable water
in the emissivity terms only; however, the impaic\din LST is small (typically less than 0.1
K for a variation of 0.5 cm in W). Eq. (2) does nake into account directional temperature
and emissivity effects, which are expected to bellsim the nadir view of AATSRA<21.7°).

In EqQ. (2), temperatures can be either in K or °C.

Since emissivity only appears explicitly in thetlago terms of the right-hand side of Eqg. (2),
it seems that atmospheric and emissivity effeatssaparated in the LST retrieval. However,
it should be noted that emissivity effects are alswplicit in the “non-emissivity” or
“atmospheric” part of Eq. (2) through the brighthdemperature 1§ and the temperature
difference T1-T12, which are determined by both the atmosphere badtrface emissivity.
For surfaces wherAe is positive (negative), 1I-T12 is larger (smaller) than it would be for
the same atmosphere over a black-body. TherefoleenwT;;-T1, is multiplied by
“atmospheric” coefficients in Eqg. (2), there is awer or under-correction of atmospheric
effects depending on the sign &¢. The over or under-correction induced by emisgiist
compensated by the corresponding emissivity teriagn(2). Similarly, emissivity effects on
T, are also accounted for by the emissivity termdeNbat the theoretical definitions of the
“emissivity” coefficients contain the “atmosphericbefficients (see Eq. 5 and 6 of Coll and

Caselles, 1997)

The critical issue for the application of the alton is the need of accurate emissivity maps
as ancillary data. For the present study, emigsiviaps were derived using the vegetation

cover method (Valor and Caselles, 1996), whichaseld on a physical surface model and

10
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estimations of fractional vegetation cover througectral indices. In this method, the

emissivity in band k is estimated through the retethip:

&k =& f+ Ekg (a-f) + 4 <> f (1-) 3)

where g, and g4 are the vegetation and ground emissivity, respelgti <ce,> is the
maximum cavity term, and f is the fractional vegieta cover. The cavity term accounts for
the effect of radiance internal reflections betwdendifferent components of a structured and

rough surface (Caselles and Sobrino, 1989).

Sincesy, &g and <d,> depend on the surface type, they were obtainedobybining the
Advanced Spaceborne Thermal Emission and RefledRadiometer (ASTER) Spectral
Library (Baldridge et al. 2009) and the GLOBCOVEBL(C) global classification (Bicheron
et al.,, 2008). The ASTER Spectral Library is thesimextensive published dataset of TIR
reflectance spectra including both natural (soitbgks, vegetation, minerals) and manmade
(asphalt, tar, concrete, brick, tile) materials.eTGLC biome map provides the global
classification with best spatial resolution (300 tm)date, which is one of the key factors to
improve classification accuracy (Herold et al., 0Bleiskanen, 2008). It is generated from
MERIS data (with reasonably good spectral resat)tizssing an unsupervised classification
regional expert-tuned procedure similar to the ecedsor GLC2000 classification
(Bartholomé and Belward 2005), and is compatibli wie standardized legend of the United
Nations Food and Agriculture Organization Land GQGo@#assification System (LCCS). It
should be noted that the approach used here foelngdsurface emissivity based on land
surface classes and fractional vegetation covesinslar to that used by the operational

AATSR LST algorithm to define the coefficients of.K1).

11
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Surface type maps were derived from GLC data. Eak@ surface type was assigned an
emissivity class depending on the soil and vegmidifpe contained and the surface structure
(see Table 2), and then the vegetation and grommsisevities for each class were estimated
from the ASTER Spectral Library data. Using thiogadure, the initial 22 classes (and
associated subclasses) were reduced to only 18eslataking into account the components

included in each class and the similarity betwagfase structures (Table 2).

Table 3 gives the correspondiag, &g and <d,> values for Eq. (3), or alternatively effective
emissivity values, for each class. For the caseegktated surfaces, classes were grouped
attending to structure (low grasses/crops, shmgesgtiower than 5 m, shrubs/trees higher than
5 m), background (soil or water depending on flagdconditions), and vegetation type
(green grasses, evergreen or deciduous shrubj/thee=ach case, the emissivity values for
vegetation and ground (or water) were calculatedguthe emissivity spectra of the samples
given in the ASTER Spectral Library. The spectraenBrst convolved with the AATSR
spectral response curves for the 11 angih2bands to get the band emissivity values. These
values were then averaged for the selected saniplése case of soils, all samples available
in the library (52) were used, which showed lowiataitity in these bands (standard deviation
smaller than +0.005). There are only four vegetaamples. The green grass sample was
used for classes 1 and 3, the average betweerecanidl deciduous samples for classes 2 and
4, the conifer sample for class 6, and the decidwample for class 5. Rocks were excluded

since they should not be usual in these surfaastyp

For vegetated surfaces with a significant structi@missivity classes 2, 4, 5 and 6) the
maximum cavity term was determined with a simulatprocedure. According to Caselles

and Sobrino (1989), the cavity term for nadir olsagon is given by &=(1-gg)ex/F(1-f),

12
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where F is a shape factor that depends on the thaigh separation between the surface
elements, and considers the energy transmissiowebat them. The cavity term was
simplified and parameterized in terms of fractiomafetation cover only and a maximum
cavity term (<d> in Eq. 3) that represents the maximum value fgivan surface geometry
with f ranging from O to 1 (Valor and Caselles, @29The cavity term was calculated for
different geometric structures, using the vegetadod ground/water emissivities obtained
above, and for fractional vegetation cover randgmg 0 to 1. The maximum value for each
case was selected. Then, the average of the maxivalues was calculated for each class,

resulting in the <el> values given in Table 3.

In the case of non-vegetated surfaces, such asrbeke water, or snow and ice, average
values were calculated from the samples providethbyASTER Spectral Library (389 rock
samples, 2 water samples and 4 snow and ice sgmghesa unique effective value for each
AATSR band was calculated. Certainly, rock emis&sishow high standard deviations, and
probably it would be necessary to distinguish thesing additional rock maps. Finally,
effective emissivity values were calculated forarmrbareas using the spectra for manmade

materials (tiles, asphalt, concrete, etc.) andidenisg regular city structures.

Fractional vegetation cover required in Eq. (3) wafkculated from normalized difference
vegetation index (NDVI) and reflectance values IATASR red (0.66um) and near infrared

(0.87um) bands using the following relationship (Valoda@aselles, 1996):
1- NDVI
NDVI ¢
f=

L NDVI | _ [/ NDVI
NDVI, NDVI,

(4)
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where NDVI is the pixel vegetation index, ND\And NDV|, are the index values for bare
soil and full vegetation, and factor K is

K= p2v _plv (5)
Paxs ~Ps

where p;y and p,, are respectively the red and near infrared reffex values over full
vegetation, andpzs and p;s are the corresponding reflectances over bare Adlilthese
coefficients can be extracted from the AATSR sciesedf. As an example, Figure 1 shows
mean emissivityg=(€11+€12)/2) and band emissivity differencAgEce;;-€15) maps derived for
the Eastern part of Spain using two AATSR scenemlieed on March and July, 2007. In
order to minimize the impact of cloud cover, thegadure can be repeated for several dates

along the year to produce monthly emissivity conitessat regional or global scales.

3. T-BASED VALIDATION

The T-based method for satellite LST validationthe direct comparison with ground

measurements performed at a field site concurrenttii the satellite overpass. Thus, it

provides an independent evaluation of the radiamejuality of the satellite instrument

together with the ability of the LST retrieval atgbm to correct for atmospheric and

emissivity effects. However, it is necessary tihat LST observed by the ground instruments
at several points over the test site is truly repnéative of the average LST over the
instantaneous field of view of the satellite sendor which the site must be thermally

homogeneous from the point scale to several kilerseSince most of the Earth's surface is
heterogeneous at these spatial scales, high-quabiynd validation data are limited to few

biomes such as lakes, silt playas, grasslands gmzllural fields collected during dedicated

campaigns (Wan et al., 2002 and 2004; Coll et28l05). An exception is the Lake Tahoe
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automated validation site (Hook et al., 2007), whdake surface temperatures are

continuously measured since 1999.

A homogeneous site for LST validation was establisim a large (>30 kfj, flat area of rice
fields close to Valencia, Spain since 2002. In Janig August, rice crops are well irrigated
and attain nearly full vegetation cover (see Figi)rdt makes the site highly homogeneous in
terms of both surface temperature and emissivity eases the radiometric measurement of
LST. Ground data from the Valencia test site hasenbused in previous studies (Coll et al.,
2005, 2006, 2007 and 2009a). The daytime thermalodgeneity of the site was assessed with
AATSR and MODIS data at 1x1 Kmand with ASTER TIR data at 90x90°nResults
showed typical variability (standard deviation) garg from 0.2 to 0.5 K depending on the

spatial resolution.

Several TIR radiometers were distributed over anidridto measure the ground LST and its
variability concurrent to AATSR daytime overpasg6:20-10:40 UTC). The instruments
were two CIMEL CE 312-1 radiometers with four bar&e-13.3um, 11.5-12.4um, 10.2-
11.3um, and 8.3-9.31m) (Brogniez et al., 2003), one CIMEL CE 312-2 cadeter with six
bands (8.0-13.3im, 8.3-8.6 um, 8.5-8.Am, 9.0-9.3 um, 10.2-11,0m, and 10.9-11.7 pum),
and two Everest model 112.2L thermometers (13 (www.everestinterscience.com). The
instruments were calibrated against a referencekbtaly before and after each field
measurement day and intercompared in the field. gtoeind LSTs were calculated by
averaging the ground temperatures measured by \th#alsle radiometers within three
minutes centered on the satellite overpass timee 3Standard deviation of the ground

temperatures was calculated as a measure of thimlspad temporal variability of LST
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(typically <0.5 K). More details on the ground LST measuremeaisbe found in Coll et al.

(2005 and 2006).

Radiometric temperatures were corrected for emtgsi¥fects, including the reflection of the
sky irradiance. Surface emissivity was measurethenfield using the box method (Rubio et
al., 2003) for the four channels of the CE 312-diagmeters The CE 312-1 channels at 10.2-
11.3 and 11.5-12.4m are similar to the AATSR bands at 11 andufr?, respectively. A total

of 30 emissivity measurements were taken at diftespots on the test site for each channel.
More details on the field emissivity measurements given in Coll et al. (2007). We
obtained uniform and high emissivity values@.985+0.005) with small spectral variation in

the 8-13um range, as expected for full vegetation cover.

Together with the average ground LST, we estimahedtotal uncertainty including the
radiometer calibration error, the emissivity coti@et error (0.2 K for measured emissivity
uncertainty of 0.005), and the LST variability. @étdl of 28 cloud-free, daytime concurrences
of ground and AATSR data were collected in July &ougjust, 2002-2007. Table 4 lists the
ground LST (F) and uncertainty for each case. The center of Ithien? grid was at
0°17°50"W, 39°14'27”N in 2002-2003; 0°17°'43"W, 325'01"N in 2004; and 0°18'28"W,
39°15'54"N in 2005-2007. For each case, we extththe concurrent AATSR brightness
temperatures in the 11 and 12n bands, nadir view from L1lb scenes (ATS_TOA 1P,
georeferenced, top of atmosphere data). We useysawf 3x3 pixels centered on the
measurement site, for which the average value \abzilated (see Table 4). The standard

deviation of 1 and T, for the 3x3 pixels was typically 0.1 K.

For each validation case, Table 4 shows the AAT8R+dd LST (Taatsr) as obtained from:
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(i) The operational LST product in the AATSR LewHata. It is the result of applying Eq.

(1) with the operational classification and franbvegetation cover maps. The Valencia test
site is classified as biome i=6 (broadleaf treethwround cover) and the assigned f value is
0.40-0.47 in July-August. The data in Table 4 & dverage for 3x3 pixels centered on the

site.

(i) The optimized AATSR algorithm, in which we &gsed biome i=8 (broadleaf shrubs with
ground cover) and f=1 (full vegetation cover) in.HKi) for application to the brightness
temperatures in Table 4. This selection of i aryiefds the best agreement of LSTs derived

from Eq. (1) with the ground data (Coll et al., 28]

(i) The explicit emissivity-dependent algorithmed. 2) applied to the brightness
temperatures using the emissivity values obtainaah f£q. (3) §€=0.986 and\e=-0.005 at the

site, with f=0.91, emissivity class 1, and GLC sld4d) and the mean precipitable water for
July and August (2.5 and 2.7 cm, respectively) laisined from the National Centers for

Environmental Prediction (NCEP) global troposphanalyses product (Kalnay et al., 1996).

Figure 3 shows the comparison betweenrdr and T, and Figure 4 plots the LST error
OT=Tpatsr-Tg @s a function of time for the three options of L&frieval. The operational
LST product clearly overestimated the ground LST2kp 5 K depending on the validation
case. For the 28 cases, the average valdd air bias was 3.6 K with standard deviation of
0.7 K. However, the optimized AATSR algorithm and. E2) agreed very well with each
other and with the ground LST&T values ranging between -1.0 and +1.0 K for mdshe

cases. In Figure 3, the correlation coefficient (ffween Farsr and Ty is 0.88 for the

17



408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

optimized algorithm and 0.90 for Eq. (2). For th#imized algorithm the average bias was
0.2 K and the standard deviation was 0.5 K, yigjdimse=+0.5 K, while for Eq. (2) the bias
was 0.4 K, and the standard deviation was 0.5 Ksémm0.6 K). Although the validation

cases are few, covering one surface type with éichatmospheric and LST variability, the
results show the good accuracy achievable with ARTdata. On the other hand, Figure 4
suggests that the positive bias in AATSR LSTs ighdlly increasing in the 2006 and 2007
campaigns. This effect may be due to the small rurob validation cases available for the

last two years, and it will be investigated in fmdming field campaigns.

The large overestimation given by the operation&8TLproduct is due to incorrect
classification and fractional vegetation cover gissd to the test site. Using the same biome
(i=6) but setting f=1 in Eq. (1), the AATSR algtmit would yield better agreement with the
ground data &T between 0.4 and 2.4 K, average bias of 1.4 K).aAsalternative to the
AATSR classification, Noyes et al. (2007b) consadehigh-resolution (1 km) global biome
classification maps such as those from the Unitsexsi Maryland (UMD) (Hansen et al.,
2000) and the International Geosphere-Biospherg&rGBP) (Loveland et al., 1998). The
Valencia site is classified as cropland in bothesasvhich corresponds to AATSR biome 12
(broadleaf-deciduous trees with winter wheat). ggwl2 and f=1 in Eqg. (1), the AATSR-
derived LSTs overestimated the ground LSTs by ageainom 1.2 to 3.3 K for the 28

validation cases, with average bias of 2.3 K.

Excluding the optimized algorithm mentioned abowa,(f=1), the best agreement with the
ground LST was obtained for vegetation biomes 2gtileaf deciduous trees), 3 (broadleaf
and needleleaf trees) and 5 (needleleaf-decidueas)tusing f=1, resulting in biases of -0.3,

-0.4 and 0.5 K, respectively. Other vegetation @ene.g., 1, 4, 9, 10 and 12 in Table 1)
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yielded large positive biases (2.3-2.5 K) even Jth. In terms of surface emissivity, all the
above fully-vegetated biomes should be quite similéth € andAe values close to those used
for the Valencia site and thus the retrieved LSAsu$d be similar. However, they produce
rather different LST estimates showing the highsgamty of the AATSR LST algorithm to
the biome assignation. Noyes et al. (2007b) algedcha high sensitivity of the algorithm to
the fractional vegetation cover. For comparisonpacertainty of +0.005 in botéy; ande;,

results in an LST uncertainty of £0.5 K in the agplemissivity-dependent algorithm (Eq. 2).

4. R-BASED VALIDATION

The R-based method (Wan and Li, 2008) does notineeguound LST measurements and
thus provides an alternative for satellite LST dation over a wide range of biomes and LST
and atmospheric regimes. The ground temperatuesalculated from radiative transfer
simulations using at-sensor brightness temperaturethe 11 pum band, near concurrent
atmospheric temperature and water vapor profiles samface emissivity measurements. As
mentioned above, emissivity in AATSR bands at 1d &8 um is high and exhibits small
variations for most land cover biomes, so the Relamethod could be applied, with care,
globally. In this study, radiative transfer simigats were performed using the MODTRAN 4
code (Berk et al., 1999). In the next section,Rhkbased method is described. In section 4.2,
the feasibility of the method is assessed throughcomparison with ground LST
measurements and a sensitivity analysis is perfdriRebased validation results for two new

biomes (bare soil and lake) are presented in sedtid.

4.1. Description of the R-based method
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456 The R-based method is physically based on the tregliransfer equation. For a surface at

457 temperature T and with spectral emissiwafy the at sensor spectral radiance measured in

458 band k at zenith viewing angBe(Lkse'} can be written as

459 L>=[7 R f
< =y FkM{[eBAT) + (L&) Tn(®) + L (6)} dA (6)

460 where {(M) is the normalized spectral response functionawfdok (jgofk (A)A =1), B, is the

461 Planck function for blackbody spectral radiantejs the atmospheric transmittance,’ lis
462 the atmospheric radiance emitted towards the semsut K' is the downwelling sky
463 irradiance (Lambertian reflection assumed). Thghirniess temperaturey, Tcorresponding to

464 the at-sensor radiance is defined fassentBk(Tk), Bk being the band-averaged Planck function,
465  B(T*) = [ i (VB (T*)dA (7)

466 where T* is a generic temperature. Using Eqg. (@oktup tables for T*-RT*) conversion
467 can be generated for a given band at small temperateps in order to calculatg ffom
468 L Equation (6) is the basis of the so-called fodvaimulation, in which the at-sensor
469 radiances or brightness temperatures are simufeded surface temperature and emissivity
470 data, and atmospheric parameters (', and K') calculated with MODTRAN 4 from
471 temperature and water vapor profiles. Similarly,. £§) can also be used for inverse
472  simulation, that is, the calculation of surface penature (T) from satelliteTor L™ In this
473 case, the right-hand side of Eg. (6) can be caledlderatively for different T values until it

474  agrees with the prescribeqisf_nvalue.

475
476 The R-based method requires accurate temperatdrevater vapor profiles representing the

477 actual atmospheric conditions at the time of thels@ observation. The accuracy of the
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atmospheric profiles can be assessed with thestegjested by Wan and Li (2008), which
involves the calculation a&¥(T11-T12)=(T11-T12)obs (T11-T12)sim, that is, the difference between
the Ty3-T1, value observed by AATSR and the-TT1» value simulated from the atmospheric
profiles and the surface emissivity data. The telses on the fact that the atmospheric effect
is larger at 12um, owing to the water vapor continuum absorptiohe T;3-T;2 is usually
positive and increases with the atmospheric watpok When the atmospheric profile used
for the R-based LST calculation is over (underyecting the atmospheric effect, thé{T 11-
T12)<0 (>0) since the calculated, profile basag T, value is larger (smaller) than the actual
AATSR value. Therefored(T11-T12) should be close to zero when the atmospheridlesof
used in simulations represent the real atmospluemclitions and the effect of the surface

emissivity uncertainties is small. The R-based wettan be summarized as follows:

a) Calculation of the R-based in situ LSTr¢) from the 11um band at-sensor radiance using
atmospheric profiles and surface emissivity datadise simulation). The 3dm band is used
because it is less affected by variations in athesp water vapor and temperature. The LST

error @T) is the difference between the product LST apg. T

b) Calculation of brightness temperatures in batdsl and 12uim using k-, as ground LST,
atmospheric profiles and surface emissivity daiee¢tl simulation). The differena®T11-T12)
between the actual and the simulated-Ti, value is obtained. Note that the brightness
temperature 1; simulated here is equal to the measuredu$ed in step a). Thud(T11-T12)

is equal to the difference between the simulatetithe measured brightness temperatyge T
Since the 12um band is not used in ther} calculation, it provides an independent

assessment of the atmospheric profiles.
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A good knowledge of the spectral emissivity of ite is necessary for the application of the
method. It should be applied over long time periatigach site to analyze the relationship
betweendT andd(T11-T12) and select the cases wilir11-T12) values around zero for which

the error introduced by the atmospheric profilesnmll.

4.2. Feasibility and sensitivity analysis of thé&sed method

In order to show the feasibility of the R-based et we compared the ground LSTs derived
from radiative transfer simulations with concurreground-measured LSTs. Two ground LST
datasets were used. (1) The Valencia data showiale 4 corresponding to full vegetation
cover, with LSTs ranging from 25 to 31 °C and Wgiag from 2 to 4 cm. (2) A set of 99
ground measurements of lake surface temperatune lfeke Tahoe, USA (Hook et al., 2007)
concurrent to AATSR overpasses in 2002 and 200, daytime and nighttime, which have
been used previously in Coll et al. (2009a). Cléne&- conditions were ensured by means of a
statistical cloud masking algorithm (any sceneshwvat mean <4.4 °C and/or a standard
deviation >0.44 K were excluded). For the Lake TEabata, surface temperature ranges from
7 to 22 °C, and W from 0.2 to 2 cm. Therefore, tthe datasets cover a wide range of LST
and atmospheric conditions. Moreover, the two saateshomogeneous in terms of emissivity
with well-known emissivity values based on groundasurements{;=0.985 anct;,=0.980

for the rice fields) or spectral libraries;{=0.991 anck;,=0.985 for water; Baldridge et al.,

2009), which facilitates the application of the Bsbd method.

For the Valencia site, we used three types of gbimarsc profiles. Radiosonde balloons were
launched at the test site near-concurrently withT&R overpasses for 5 cases (cases 16, 19,
21, 23, and 27 in Table 4). Since local radiosormdeasurements are seldom and limited to

dedicated campaigns, we also used the NCEP glapidpheric analyses product (Kalnay et
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al., 1996), which provides global atmospheric d#td°x1° grids at 00:00, 06:00, 12:00 and
18:00 UTC. For each case in Table 4, the NCEP Ipsofor the four grids closest to the site
and the two times closest to the overpass werarlyenterpolated to obtain the NCEP
profile at the site and the overpass time. Finallg, also used atmospheric profiles derived
from the Aqua/AIRS instrument (Susskind et al., 20@ith spatial resolution of 45 km and
overpass time at the site between 12:30 and 13T3D. BIRS profiles were available for 16
cases in Table 4 (10-12, 14, 16-23, and 25-28).tRk@rLake Tahoe dataset, we only used

spatially and temporally interpolated NCEP atmosigh@ofiles for the 99 validation cases.

The profiles were entered in MODTRAN 4 to calcultéte atmospheric transmittance and
emitted upwelling and downwelling radiances. Uskgy (6), we calculated the ground LST
(Trp) from the corresponding brightness temperature and the differencé(T11-T12) for
each case. Figure 5 plots the difference betweemtbund-measured LSTs and the R-based
LSTs @T=T4Tr-n) againstd(T11-T1o) for all the sites and atmospheric profiles coassd (49
cases in Valencia and 99 in Lake Tahoe). For dhgids, a close relationship (R=0.91) is
observed betweemdT and &(T11-T12), with large positive (negative) values @&T
corresponding to large positive (negative) valuésd@1;-T12), and small LST errors
associated with a narrow ranged§T11-T12) values in the vicinity of zero. The correlatian i
slightly higher for the Lake Tahoe dataset aloneabse the uncertainties in the ground LST
measurements and the water emissivity are smadtlan tin Valencia, as well as the

precipitable water.

For most of the cases with local radiosondes,dhend &(T1:-T12) values were relatively
small, showing that the atmospheric profiles weteueate. The NCEP profiles provided

large, negative values d@T and d(T11-T12) in some cases, meaning that the simulations
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553 overestimated the atmospheric effect. For othees;asowever, the NCEP profiles yielded
554  accurate results withT andd(T11-T12) close to zero. Most of the cases with AIRS pesfil
555 resulted in large, positivdT and &(T11-T12) values. The bad performance of AIRS profiles
556 may be due to the temporal gap between EnvisatAgua (2-3 h.), and the coarse spatial
557 resolution of AIRS data (45 km). The data in FigGreorrespond to a wide set of LST and
558 atmospheric regimes and cover wide rangesTadndd(T11-T12). The linear regression for all
559 data yielddT=1.78>(T11-T12)+0.02. From it, we can obtain -0.6 8d1;-T12)<0.6 K as the
560 condition for which the error in the calculated &bd LST is within £1.0 K.

561

562 The data in Figure 5 are affected by uncertaintidsoth the ground LSTs and the radiative
563 transfer calculations involved in the R-based meti#osensitivity analysis was performed to
564 assess the accuracy of the simulateg @and T:-T12 values using the radiosonde profile of
565 case 16 as a representative case (W=2.5 cm). Thet @f atmospheric uncertainties was
566 simulated in two ways. First, the water vapor mixmatio was increased by 10% at each
567 profile level. Second, the air temperature waseased by 1 K at each level. These changes
568 represent small temporal and spatial atmospheni@tians or typical radiosonde errors.
569 Table 5 shows the effect of the atmospheric vanation &.p (inverse simulation), i1k, Ti2
570 (forward simulation) and the difference;T1,. Atmospheric effects on;Tand T, have the
571 same sign, so they cancel in part nn-T12. The uncertainty in the MODTRAN 4 code was
572 assumed as the root square sum (rss) of the elwerso the water vapor and air temperature
573 changes.

574

575 We assumed an uncertainty of 0.00%ipandes,, which is justified for vegetated surfaces
576 and is a typical uncertainty in field emissivity asearements (Rubio et al., 2003). However,

577 larger uncertainties may be expected for bare sesfaFor the present case, the resulting
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uncertainty in the simulated temperatures is showmable 5. Emissivity uncertainties are
regarded as random and may have opposite signiseirtwto bands. For this reason, the
emissivity uncertainty in the simulated4T;, is obtained as the rss of the errors in dnd

T1o. Finally, the total uncertainty in the simulatesniperatures is estimated as the rss of the
above atmospheric, MODTRAN 4 and emissivity erroesulting in 0.7 K for k., and 0.4

K for the simulated Ti-T1».

NCEP and AIRS profiles may be less accurate thaamasd in the previous uncertainty
analysis, thus the errors in the calculategd, Bnd T;;-T1> may be larger. To assess the
accuracy of the NCEP and AIRS profiles, we companedive cases of the Valencia dataset
with local radiosondes with the same cases with R@gd AIRS profiles. If we assume that
the local radiosondes represent accurately the sgheoic state, then the difference between
Tr-p calculated from radiosonde and NCEP/AIRS proiigethe LST error due to the incorrect
profile. Similarly, the difference between the @bnde T;-T;», and the corresponding
NCEP/AIRS value is thé(T;3-T;) difference due to the incorrect profile. FiguGzsand 6b
show the differencedT between radiosonde and NCEP/AIR&.,Tvalues against the
precipitable water difference MdWncepiairs andd(T11-T12), respectivelydT shows a good
correlation (R=0.82) with the water vapor differeac with NCEP/AIRS overestimating
(underestimating) radiosonde r§ when NCEP/AIRS water vapor overestimated
(underestimated) radiosonde water vapor. Furthentbe correlation betwee&T andd(T 13-
T12) is excellent (R=0.94) and shows a similar behaa® in Figure 5. The correlation in
Figure 6b is higher than in Figure 6a because fffiereihce in the R-based LSTs depends not
only on the precipitable water difference but aleahe difference in temperature profiles and

viewing angle, and all these effects are also lgngelected ind(T11-T1o).

25



603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

The results of this section show that large ermrR-based LSTs are due to inappropriate
atmospheric profiles, and that tldT;-T12) test may be used to select the profiles that
reasonably represent the actual atmosphere foAR¥SR observation. Cases meeting the
condition -0.6 K9(T11-T12)<0.6 K correspond to errors within £1.0 K in theaulated in situ
LST, which is appropriate for LST validation. Thi®ndition was derived using ground
measured LSTs covering a wide range of conditidigu¢e 5), and is compatible with the

preceding uncertainty analysis and &ed(T11-T1o) relationship shown in Figure 6b.

4.3. Application of the R-based method

The R-based method was applied to two differentei®in the Valencia test site for a total of
47 cloud-free, daytime and nighttime AATSR scememfMarch to early May in 2003-2008.
Cloud-free conditions were assessed by means oélvisspection and threshold tests using
LST-T11, T11-T12, and the standard deviation of;.TOn these dates, rice fields are fallow and
the soil is left dry before the start of the growiseason in mid May. Therefore the site
appears as a wide area of uniform, dry bare sailfoA the summer full-cover conditions, we
assessed the uniformity of the site with satellisda at different resolutions (AATSR and
MODIS at 1 km, ASTER and Landsat[@00 m) and field surveys. We tried to use the bare
soil for T-based validation, but preliminary teshowed that the ground-scale thermal
heterogeneity of the site was higher than for thleviegetation case, and thus the ground
LSTs may not be accurate enough for AATSR LST aiah. For this reason, we applied the
R-based method to the bare soil site using concufECEP atmospheric profiles (local
radiosondes were not available), and laboratorys&inty measurements. Different samples
were taken from the site for mineralogy analysesutting in homogeneous composition of
14% sand, 35% clay, 4.5% organic matter and 44%ocate (Mira et al., 2007). According

to the measurements (30 per channel), the soilsértis was quite uniform with values
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€11=0.957 ande;,=0.954 (uncertainty of +0.005) for dry condition®lifa et al., 2007).
Additionally, we applied the R-based method over tiearby Albufera Lake (about 7 km in
diameter, a few kilometers north of the rice fiekite, see Fig. 2b) using the same AATSR

scenes and NCEP profiles, and takingr0.991 and;,=0.985 for water.

The AATSR viewing anglef)) and brightness temperatures(@and T;,) for the bare soil and
lake cases are shown in Tables 6 and 7, respectiVbese data are the average values for
3x3 pixels centered on the validation sites. Irhbidbles, we also show the AATSR-derived
LSTs (Taatsr) Using the three algorithms as in section 3:h@ operational algorithm, which
assigns biome i=6 and f=0.35-0.40 in March-May lfoth sites; (ii) the optimized AATSR
algorithm selecting biome i=11 (bare soil) for thege soil cases and i=14-d/n (lake day/night)
for the lake cases; and (iii) the explicit emissidependent algorithm (Eq. 2) using the
emissivity values derived from Eq. (¥=0.974 andAe=-0.007 with f=0.06 for bare sail,
€=0.988 and\e=0.006 for water) and the NCEP mean precipitableenar March-May (1.2-
1.9 cm). Taatsr Values from options (i) and (ii) are quite simifar the bare soil site (Table
6), with differences of a few tenths of K. For thke site (Table 7), options (ii) and (iii) agree

very well with each other and differ by 1-4 K fraption (i).

Table 8 shows the calculated R-based LSH,fTand the differencé(T1:-T1,) for each bare
soil and lake validation case from Tables 6 andh& precipitable water obtained from the
NCEP profiles (Wcep is also shown. When comparing each case, therdiftes between
0(T11-T12) values for bare soil and lake are relatively $r{ralot mean square difference of
0.2 K), being compatible with the uncertainty deesmall emissivity errors (most likely
affecting the soil). Nearly all the validation caseet the condition -0.6 KXT1;-T12)<0.6 K

derived in section 4.2. The outliers are markedhWwiin Table 8. This means that, for most
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cases, the NCEP profiles provided a sufficientlgusate description of the atmosphere over
the site at the time of AATSR observations, andRAeased LSTs can be used for AATSR
LST validation. Figure 7 shows the AATSR LST er(df =Taatsr-Trb) againstd(T11-T12)

for the three algorithm options and the two sitas. all algorithms and sites, Figure 7 points
out a high correlation betweéT andd(T1:-T12), especially for algorithm (iii) in both sites,
and algorithm (ii) in the lake site. The relatioipshetweendT andd(T11-T1o) is similar as in

Figure 5, which gives confidence in the R-basedltes

Considering only thedT values for the cases meeting the abd{E;-T12) condition, we
computed the average bias, standard deviationrage for each algorithm and site, which are
given in Table 9 together with the ranged®t Algorithm (iii) yielded the smallest LST errors
for both sites (rmse=+0.4 K), withT values within £1.0 K for all cases. The optimized
algorithm (ii) resulted in small errors for the ¢akite (rmse=+0.5 K), in good agreement with
the T-based validation in Lake Tahoe shown in €Hl. (2009a). For the bare soil site, LST
errors were still acceptable (rmse=t1.1 K) and gahe met the target accuracy of the
AATSR algorithm (x1.0 K at nighttime and +2.5 Kadytime). Again, the largest LST errors
were provided by the operational algorithm (i) ftne lake cases because of the
misclassification of the site. However, results evbetter for bare soil (rmse=+1.3 K), with

similar LST errors as the optimized algorithm.

We did not find any significant long-term tempovalriability in the R-based LST errors for
the data used in this section (2003-2008). Compgathe daytime and nighttime results, the
operational algorithm showed lower biases at niigigtt with rmse close to +1 K for both bare

soil and water. For the optimized algorithm overebgoil, the bias changed from 0.9 K at
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daytime to -0.9 K at nighttime. For Eq. (2), norsfgant differences were found between

daytime and nighttime at both sites.

We observed a high dependence of the LST errorthefoperational and the optimized
algorithm on the actual AATSR brightness temperatlifference T:-T12, a magnitude that
plays a key role in the split-window algorithmsd€degs. 1 and 2).:I-T1, is a function of
atmospheric precipitable water, but also dependshentemperature profile, LST, surface
emissivity and observation angle. Figure 8 plots BT errors against;J-Ti» for the three
algorithms over bare soil. It appears that AATSRT&Sased on Eq. (1) overestimate
(underestimate) the R-based LSTs for large (snvalljles of T1-T12, which suggests that
coefficients k; in Eq. (1) may be overestimated. For the algorithfnq. (2), the LST error
dependence on;FT1, was much smaller. A few validation cases (32,38},40 and 41, all
corresponding to nighttime in March) showed smallues of 1:-T1, (-0.05 to 0.13 K over
water, see Table 7) andilvalues close to the ground LST, which suggestisttiey may be
affected by near surface atmospheric temperatuversions (Platt and Prata, 1993).
According to the NCEP profiles, air temperatured@@-135 m were 9 to 13 K warmer than
T11 in these cases. In these possible inversion dondjtEg. (2) resulted still in reasonable

LST errors (biases of -0.5 K over water and -0.@vér bare soil).

5. CONCLUSIONS

AATSR-derived LSTs were validated over the Valenest site during the period 2002-2008.
Validation included the conventional T-based metbuodr full-vegetated rice fields, and the
new R-based method (Wan and Li, 2008) over bateaadilake. T-based validation provides
a direct assessment of the AATSR and algorithmopaidnce since it relies on independently

measured ground LSTs. However, validation sitestiinesarge enough, highly homogeneous
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723

724

725

726

in surface temperature from ground to satellitdesgaand equipped with accurate ground
radiometers for multiple spatial and temporal samgpin an area of at least 1 knWhile it is
necessary to establish and maintain high-quality&@on sites, the T-based method is not
suitable for the global validation of satellite L9foducts because of the large heterogeneity

of land surfaces.

The R-based method provides an alternative forstdmai-operational, long-term validation
and diagnostics of the AATSR LST product at glodadle. It could be applied over surfaces
with varied LST and atmospheric regimes where giou8T measurements are not feasible
(forests, partially vegetated surfaces, semi-anghs, deserts, remote regions, etc.). Accurate
measurements of surface emissivities are necessHmg. R-based method requires
atmospheric profiles representing adequately thmspheric state at the time of the AATSR
observation. This can be checked with 8(€.:-T12) test, which must be applied for each
atmospheric profile at each site in long periodsirae to select a range 6(T1:-T12) values
around zero for which the R-based ground LSTs afiicently accurate. In this paper, we
used spatially and temporally interpolated NCEPfilg® for R-based validation over the
Valencia and Lake Tahoe sites. Local radiosondesurements and AIRS profiles were also
used at the Valencia site. Another possibility Ribased validation is to select suitable
validation areas around permanent radio soundiatioes with launching times close to

AATSR overpasses.

Results of this paper stress the need for modificat on the operational AATSR LST
algorithm. The most obvious conclusion is thatdheillary data (classification and fractional
vegetation cover maps) must be provided at the spaigal resolution as the AATSR data (1

km?). Otherwise, LST errors from 2 to 5 K can be aiedi When the AATSR algorithm (Eq.
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1) was optimized with i and f values selected factrevalidation site according to their nature,
LST errors were within the target accuracy of ti&TLproduct, with negligible biases and
rmse=x0.5 K for full-vegetated and lake surfacesl a1.1 K for bare soil. For the vegetated
surface, we found that the algorithm is very sérssito the assigned biome since the various
vegetation biomes of Table 1 (with f=1) resultedrather different biases (AATSR minus
ground) ranging from -0.4 to 2.5 K. Furthermore, TL&trors from Eq. (1) showed certain

dependence on the brightness temperature differBnce .

The explicit emissivity-dependent algorithm (Eq. @pvided accurate LSTs for all the
biomes studied, with small biases, rmse from +6.8.6 K and LST errors within +1.0 K for
most validation cases. This shows the high accuaatyevable with AATSR data in ideal
conditions. The ancillary data required for Eq. @andAs maps at 1 kfresolution) can be
derived from classification maps and monthly fraeél vegetation cover estimated from
visible and near infrared AATSR data. It is the r@gh adopted by other satellite LST
products such as MODIS and SEVIRI (Wan and DoZieg86; PUM_LST, 2008). The land
cover biomes studied here (vegetation, water anel $x@l) likely span the emissivity range of
natural surfaces. However, these results only afaptite geographical area used in the study
and the accuracy of the AATSR LST retrievals maydbiferent in other regions and under
different conditions. More validation datasets aexessary especially over deserts where
emissivity may have a larger variability in respens differences in soil composition, texture

and moisture content.
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TABLES

Table 1. Coefficients for the operational AATSR LST algbnt (Eq.

biomes (from Prata, 2002b).

1) for the different

Biome i Qi ag byi by Cui Cs
Broadleaf evergreen trees 1 0.6907 6.0951 3.8129 563%. -2.8456 -3.3617
Broadleaf deciduous trees 2 -0.5393 4.6301 3.6472 .3652 -2.7218 -3.2155
Sg%id'eaf and needleleal | 5 | sage | 48786| 3.6472] 43652 27218  -3.2155
Needleleaf-evergreen trees 4 1.0801 1.08p1 3.2972 .2973 -2.2909 -2.2909
Needleleaf-deciduous tregs g 0.7804 1.491 3.2721 8113. -2.3374 -2.7233
Broadleaf trees with 6 0.0089 | 0.0348| 3.3511]  3.903¢ 2380  -2.78p1
groundcover

Groundcover 7 0.7994|  0.7994 35088  3.5088  -2.50652.5065
Broadleaf shrubs with 8 15662 | 07833 | 3.1384 3.656 22419  -2.61p21
groundcover

SB(;ﬁad'eaf shrubs with bare 4 0.8965 | 0.8965| 3.4867| 3.4867  -2.4908  -2.4908
Dwarf trees, shrubs with |15 | 1 ga17 | 10817| 33030 3.3030  -2.2085  -2.2955
groundcover

Bare soil 11| 0.7075| 0.7041] 3.7832  3.7832  -2.7868 .786B
Broadleaf-deciduoustrées 1, | g1 | 0881 | 34106] 34106  -2.4133  -2.4183
with winter wheat

Perennial land ice 13 1.0801 1.0801 3.2972 3.2972 2.2909 -2.2909
Lake-day 14-d  -0.0005] -0.0008  2.4226 24235  -1.43441.4344
Lake-night 14-n| -0.3658] -0.3658  2.3828  2.38J3  &635 -1.3556
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911

912

913

Table 2. Emissivity classes by surface type and their gmoadence with the biomes defined

by the GLOBCOVER (GLC) dataset.

Emissivity class gllégs Description
11 | Post-flooding or irrigated croplands (or agyatic
1. Flooded 13 | Post-flooding or irrigated herbaceous crops
j : Closed to open (>15%) grassland or woody vegetatioregularly flooded or
vegetation, crops | 180 : . :
and grasslands waterlogged soil - Fresh, brackish or saline water .
Closed to open (>15%) grassland on regularly flooalewaterlogged soil -
185 ;
Fresh or brackish water
2. Flooded forest 0 Closed (>40%) broadleaved forest or shrubland peemidy flooded - Saline or
and shrublands 17 brackish water
14 | Rainfed croplands
15 | Rainfed herbaceous crops
20 | Mosaic cropland (50-70%) / vegetation (grasskEtmdibland/forest) (20-50%)
21 | Mosaic cropland (50-70%) / grassland or shrubl@0-50%)
3. Croplands and | 120 | Mosaic grassland (50-70%) / forest or shrub(@@d50%)
grasslands 140 C_:Iosed to open (>15%) herbaceous vegetation (gragssavannas or
lichens/mosses)
141 | Closed (>40%) grassland
150 | Sparse (<15%) vegetation
151 | Sparse (<15%) grassland
16 | Rainfed shrub or tree crops (cash crops, vimsyalive tree, orchards...)
30 | Mosaic vegetation (grassland/shrubland/for&)70%) / cropland (20-50%)
130 Closed to open (>15%) (broadleaved or needleleaxezigreen or deciduous)
4. Shrublands shrubland (<5m)
131 | Closed to open (>15%) broadleaved or needletbavergreen shrubland (<5m
134 | Closed to open (>15%) broadleaved deciduousktird (<5m)
152 | Sparse (<15%) shrubland
40 | Closed to open (>15%) broadleaved evergreearoi-deciduous forest (>5m)
5. Broadleaved/ 50 | Closed (>40%) broadleaved deciduous forest (>5m)
needleleaved 60 | Open (15-40%) broadleaved deciduous forest/vemad{>5m)
deciduous forest 90 | Open (15-40%) needleleaved deciduous or everdogest (>5m)
91 | Open (15-40%) needleleaved deciduous forest (>5m
32 | Mosaic forest (50-70%) / cropland (20-50%)
70 | Closed (>40%) needleleaved evergreen forest(>5m
6. Broadleaved/
needleleaved 92 | Open (15-40%) needleleaved evergreen forest)>5m
evergreen forest | 100 | Closed to open (>15%) mixed broadleaved andleleaved forest (>5m)
101 | Closed (>40%) mixed broadleaved and needletefrest (>5m)
110 | Mosaic forest or shrubland (50-70%) / grassi@0d50%)
7. Urban area 190| Artificial surfaces and assodiateas (Urban areas >50%)
200 | Bare areas
8. Bare rock 201 | Consolidated bare areas (hardpans, graveksybek, stones, boulders)
' 202 | Non-consolidated bare areas (sandy desert)
203 | Salt hardpans
9. Water 210 | Water bodies
10. Snow and ice 220 Permanent snow and ice
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914 Table 3. Coefficients for the vegetation cover method emigs(Eq. 3) for AATSR bands at

915

916

917

918

919

920

921

11 and 12um based on the classes shown in Table 2.

Emissivity class 11pum 12pum
gy &g <de> ey ) <de>
1. Flooded
vegetation, crops | 0.983+0,00% 0-970£0.005 0 0.989+0.005 0-977+0004 0
(soil) (soil)
and grasslands
0.991+0.001 0.985+0001
0 0
(water) (water)
2. Flooded forest
and shrublands 0.981+0.008 0.970+0.005| 0.014+0.004 0.982+0.009 0.977+0004 0.010+0.003
(soil) (soil) (soil) (soil)
0.991+0.001| 0.004+0.001 0.985+0001| 0.007+0.002
(water) (water) (water) (water)
3. Croplands and |, 94,6 005 0.970+0.005 0 0.989+0.0050.977+0.004 0
grasslands
4. Shrublands 0.981+0.008.970+0.005/ 0.014+0.004 0.982+0.009.977+0.004 0.010+0.003
5. Broadleaved/
needleleaved 0.973+0.00%5 0.970+0.005| 0.019+0.006 0.973+0.009.977+0.004 0.015+0.004
deciduous forest
6. Broadleaved/
needleleaved 0.989+0.00%5 0.970+0.005| 0.019+0.006 0.991+0.00%.977+0.004 0.015+0.004
evergreen forest

Effective emissivity, 11um

Effective emissivity, 12um

7. Urban area 0.969+0.006 0.976+0.004
8. Bare rock 0.93+0.05 0.95+0.05
9. Water 0.991+0.001 0.985+0.001
10. Snow and ice 0.990+0.004 0.971+0.014
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922 Table 4. Ground-measured LSTs {)Tand uncertaintieso] over full-vegetated rice fields in
923 the Valencia test site, and concurrent AATSR bngks temperatures in the 11 anduh2
924 bands, nadir viewd is the satellite zenith viewing angle. The AATS&4ded LSTs (Ratsr)

925 using different options (see text) are shown inlésé three columns.

926
o o o o operational | optimized Eqg. (2)
case| date (dmy) | Toxo ()C) | 8C) | Tu(C) | T2(C) | 7, oC) | Tanrse (°C) | Tantse (°C)
1 10/07/0: 28.€+0.€ 3.7 25.04 22.9¢ 32.1 28.€ 28.¢
2 13/07/0: 27.€+0.¢ 13.¢ 22.2¢t 19.2¢ 31. 28.c 28.2
3 26/07/0: 27.5+0.€ 1.11 23.3¢ 20.6¢ 32.C 28.€ 28.¢
4 08/08/0: 26.5+0.7 16.2 20.2¢ 17.31 29.4 26.t 26.2
5 14/08/0: 28.5+0.5 3.¢ 23.6¢ 21.52 30.§ 27.7 27.7
6 17/08/0: 29.1+0.6 | 13.97 22.81 19.8¢ 32.C 28.7 28.7
7 05/09/0: 28.(+0.6 | 19.0¢ 24.1( 22.0% 31.2 27.¢ 27.¢
8 08/07/0: 28.2+0.7 | 11.1¢ 25.3( 23.0% 33.1 29.4 29.t
9 11/07/0: 29.1+0.7 1.2C 27.0% 25.5( 33.C 29.2 29.¢
10 14/07.03 28.€+0.€ 8.6€ 24.7: 22.3¢ 32.7 29.C 29.1
11 24/07/0: 28.6+0.6 | 16.2¢ 24.6¢ 22.3¢ 32.F 28.¢ 29.C
12 30/07/0: 28.¢+0.€ 3.74 23.4¢ 20.6: 32.F 28.¢ 28.¢
13 12/08/0: 31.2+0.6 | 11.1¢ 28.1( 26.5] 33.¢ 30.2 31.C
14 28/06/0: 29.2+0.€ 8.6¢€ 26.41 24.3¢ 34.C 29.t 30.z
15 08/07/0¢ 25.7+0.6 | 16.3¢ 23.1¢ 21.6( 28.¢ 25.¢ 26.C
16 14/07/0- 27.240.7 3.74 22.4¢ 19.7¢ 31.1 27.7 27.€
17 27/07/0¢ 27.720.4 | 11.0f 25.02 23.3¢ 31.2 27.¢ 28.1
18 30/07/0¢ 27.6+0.4 1.1¢ 23.3i 20.5¢ 32.1 28.¢ 28.¢
19 12/08/0- 28.4+0.6 | 16.2¢ 25.50 23.9¢ 31.C 27.¢ 28.2
20 12//07/0¢ 27.(x0.6 | 11.1¢ 24.6¢ 23.0¢ 30.€ 27.1 27.¢
21 21/07/0¢ 28.540.6 | 18.9i 25.4( 23.6:% 31.¢ 28.4 28.€
22 28/07/0¢ 28.640.5 | 16.3¢ 24.7¢ 22.6 32.C 28.t 28.€
23 06/08/0¢ 28.(+0.E | 13.6¢ 25.3¢ 23.6¢ 31.C 28.1 28.4
24 03/07/0¢ 29.5+0.€ 8.7 27.5(C 25.9( 33.€ 29.¢ 30.4
25 22/07/0¢ 29.5+0.5 13.7 26.3¢ 24.4¢ 33.% 29.€ 30.C
26 04/07/0: 27.6+0.¢ 3.7 23.4( 20.6: 32.5 28.¢ 28.¢
27 20/07/0: 27.6+0.4 1.2 24.0% 21.6¢ 32.C 28.4 28.t
28 26/07/0: 27.540.4 19.1 24.7( 22.9( 31.2 27.¢ 28.(
927
928
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929 Table 5. Uncertainty (in K) of the simulated temperatuneshie R-based method {7, Ti4,

930 Ti, and T3-Typ) for different sources of uncertainty (see text).

931
TR b Tll TlZ Tll'TlZ
W (10%) 0.33 0.26 0.39 0.13
Tair (1K) 0.28 0.21 0.33 0.12
MODTRAN 4 0.43 0.33 0.51 0.18
€ (0.005) 0.35 0.28 0.22 0.36
Total (rss) 0.71 0.55 0.76 0.43
932
933
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934 Table 6.R-based validation cases over bare soil in thenah test site. The AATSR-derived

935

936

LSTs (Taatsr) Using different options (see text) are showrhmlast three columns.

Time o o o operational | optimized Eqg. (2)
case Pae M) | (yre) | 8O) | T T2 (| 700 @) | Tanrsn (°C) | Tawrse (°C)
1 09/03/2003 10:25| 7.0 11.49 10.46 15.2 15.0 14.5
2 12/03/2003 10:31] 4.1 12.76 12.06 15.7 15.4 15.3
3 25/03/2003 10:22] 125 1145 9.98 16.4 16.2 15.]
4 10/04/2003 10:19] 18.0 13.18 11.91 17.7 17.4 16.5
5 02/05/2003 10:28] 1.3 15.2% 13.71 20.6 20.2 18.9
6 21/05/2003 10:31] 4.1 17.41 15.61 23.5 23.1 21.§
7 12/03/2004 10:28] 1.4 11.18 10.05 15.2 15.0 14.3
8 03/04/2004 10:37] 152 12.38 11.04 16.8 16.6 15.7
9 13/04/2004 10:22] 124 12.63 11.39 17.0 16.8 15.9
10 | 06/05/2005 10:28] 1.4 16.99 15.91 21.2 20.6 19.9
11 | 25/05/2005 10:31] 4.1 19.16 17.72 24.4 23.8 22.7
12 | 14/03/2006 10:22] 125 11.89 10.93 15.5 15.2 14.4
13 | 30/03/2006 10:19] 18.2 1345 12.13 18.1 17.8 16.9
14 | 18/04/2006 10:22] 125 14.56 12.85 20.3 20.0 18.4
15 | 21/04/2006 10:28] 1.5 14.64 12.95 20.3 20.0 18.6
16 | 26/05/2006 10:28] 1.5 17.36 15.61 23.3 22.9 214
17 | 29/05/2006 10:34] 9.6 19.01 17.51 24.4 23.8 22.4
18 | 05/03/2007 10:34] 9.6 12.68 11.71 16.3 16.1 15.6
19 | 15/03/2007 10:19] 180 12.16 10.98 16.4 16.1 15.4
20 | 18/03/2007 10:25] 6.9 13.08 12.02 17.0 16.7 16.1
21 | 03/04/2007 10:22) 126 119y 10.44 17.1 16.9 15.7
22 | 08/05/2007 10:22] 125 16.88 15.58 21.7 21.2 20.7
23 | 14/05/2007 10:34] 9.6 17.14 15.81 22.0 215 20.5
24 | 30/05/2007 10:31] 4.1 17.85 16.29 234 22.8 21.4
25 | 02/03/2008 10:25] 7. 13.28 12.28 17.0 16.7 16.2
26 | 05/03/2008 10:31] 4.1 12.34 11.42 15.8 15.6 15.2
27 | 18/03/2008 10:22) 125 12.74 11.66 16.7 16.4 15.4
28 | 21/03/2008 10:28)] 1.4 11.55 9.84 17.1 17.0 15.6
29 | 03/04/2008 10:19] 180 13.92 12.80 18.1 17.7 17.4
30 | 25/04/2008 10:28] 1.5 12.65 11.30 17.3 17.1 16.1
31 | 09/03/2003 21:40| 167 8.94 8.70 10.5 10.3 11.0
32 | 19/03/2003 21:26] 109  4.77 4.73 5.5 5.6 6.7
33 | 25/03/2003 21:37] 111 1.65 0.82 4.3 4.7 4.4
34 | 03/03/2004 21:26] 110 4.84 4.68 5.9 6.0 6.8
35 | 22/03/2004 21:29] 54 6.67 6.19 8.7 8.7 9.0
36 | 13/04/2004 21:38] 111 745 7.18 9.0 8.9 9.5
37 | 15/05/2004 21:32] 0.1 12.54 11.49 16.4 16.1 15.5
38 | 07/03/2005 21:29] 5.5 0.71 0.7(¢ 11 14 2.6
39 | 26/03/2005 21:32] 0.1 11.90 11.44 14.2 13.8 14.2
40 | 12/03/2007 21:29] 5.5 5.26 5.02 6.6 6.6 7.3
41 | 15/03/2007 21:35] 5.5 6.53 6.42 7.6 7.5 8.5
42 | 16/04/2007 21:29] 54 10.12 9.33 13.2 13.0 12.7
43 | 19/04/2007 21:35| 5.6 11.42 10.64 14.5 14.3 14.0
44 | 08/05/2007 21:37] 111 1568 14.92 18.8 18.3 18.1
45 | 02/03/2008 21:40 166 11.46 11.37 12.7 12.4 13.4
46 | 18/03/2008 21:37] 111 1091 10.47 13.9 13.6 13.9
47 | 31/03/2008 21:29] 5.5 11.09 10.65 13.3 13.0 13.3
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937 Table 7. R-based validation cases over Albufera Lake inMakencia test site. The AATSR-

938 derived LSTs (Rartsr) using different options (see text) are showrhmlast three columns.

Time o o o operational | optimized Eqg. (2)
case Pae M) | (yre) | 8O) | T | T2 0| 70 @) | Tanrsn (°C) | Tawrse (°C)
1 09/03/2003 10:25| 7.5 11.91 10.91 15.6 13.2 13.3
2 12/03/2003 10:31] 3.5 13.01 12.32 15.9 13.8 14.09
3 25/03/2003 10:22] 13.0 12.04 10.62 16.9 13.9 14.0
4 10/04/2003 10:19] 185 13.7% 12.48 18.3 15.4 15.5
5 02/05/2003 10:28] 1.9 16.0% 14.55 21.3 18.0 18.2
6 21/05/2003 10:31] 3.5 17.8% 15.95 24.3 20.4 20.7
7 12/03/2004 10:28] 1.9 9.45 7.67 15.1 11.9 12.1
8 03/04/2004 10:37] 146 11.9% 10.69 16.3 13.6 13.7
9 13/04/2004 10:22] 129 12.50 11.22 17.0 14.2 14.3
10 | 06/05/2005 10:28] 1.9 17.45 16.35 21.7 18.8 19.0
11 | 25/05/2005 10:31] 3.5 18.82 17.44 23.9 20.6 20.9
12 | 14/03/2006 10:22] 13p 1191 10.96 15.5 13.1 13.7
13 | 30/03/2006 10:19] 18.F 13.64 12.29 18.4 15.5 15.9
14 | 18/04/2006 10:22] 13.p 1481 13.16 20.4 17.0 17.4
15 | 21/04/2006 10:28] 2.0 14.88 13.02 20.8 17.2 17.5
16 | 26/05/2006 10:28] 2.0 17.15 15.36 23.2 19.5 19.9
17 | 29/05/2006 10:34] 9.0 19.09 17.52 24.7 21.1 214
18 | 05/03/2007 10:34] 9.1 12.91 11.94 16.6 14.2 14.2
19 | 15/03/2007 10:19] 186 12.38 11.14 16.6 13.9 14.
20 | 18/03/2007 10:25] 7.5 12.92 11.91 16.7 14.2 14.3
21 | 03/04/2007 10:22) 131 12.04 10.51 17.1 14.1 14.7
22 | 08/05/2007 10:22] 130 16.76 15.49 21.5 18.4 18.9
23 | 14/05/2007 10:34] 9.0 16.54 15.36 21.0 18.0 18.7
24 | 30/05/2007 10:31] 3.5 17.99 16.33 23.8 20.2 20.4
25 | 02/03/2008 10:25] 7.5 13.49 12.53 17.2 14.7 14.9
26 | 05/03/2008 10:31] 3.5 12.19 11.21 15.8 13.5 13.5
27 | 18/03/2008 10:22) 131  12.89 11.82 16.8 14.3 14.4
28 | 21/03/2008 10:28] 2.0 11.05 9.28 16.7 13.5 13.7
29 | 03/04/2008 10:19] 186 14.32 13.23 18.4 15.7 15.4
30 | 25/04/2008 10:28] 2.0 11.32 9.91 16.1 13.2 13.3
31 | 09/03/2003 21:40 16.p 8.1 7.94 9.4 8.2 8.5
32 | 19/03/2003 21:26] 112  4.36 4.41 4.8 4.0 4.6
33 | 25/03/2003 21:37] 109 6.44 5.81 8.8 7.1 7.3
34 | 03/03/2004 21:26] 112  3.68 3.65 4.3 3.5 4.0
35 | 22/03/2004 21:29] 5.1 5.78 5.37 7.6 6.1 6.4
36 | 13/04/2004 21:38] 109 7.56 7.26 9.2 7.8 8.1
37 | 15/05/2004 21:32] 0.1 11.38 10.53 14.5 12.4 12.5
38 | 07/03/2005 21:29] 5.1 0.04 0.04 0.4 -0.3 0.3
39 | 26/03/2005 21:32] 0.7 11.59 11.12 13.9 12.2 12.3
40 | 12/03/2007 21:29] 5.1 4.56 4.43 5.5 4.5 5.0
41 | 15/03/2007 21:35] 5.3 5.73 5.68 6.6 5.6 6.1
42 | 16/04/2007 21:29] 5.1 9.57 8.87 12.3 10.4 10.6
43 | 19/04/2007 21:35| 54 11.59 10.81 14.7 12.6 12.7
44 | 08/05/2007 21:37] 109 1439 13.84 17.0 15.2 15.7
45 | 02/03/2008 21:40, 164 11.08 10.97 12.5 11.2 11.4
46 | 18/03/2008 21:37] 109 10.2¢ 9.5Y 13.1 11.1 11.3
47 | 31/03/2008 21:29] 5.1 9.96 9.63 11.8 10.3 10.5
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940 Table 8.Calculated R-based LST £T) and difference(T11-T1,) for each validation case in
941 Table 6 (bare soil) and Table 7 (lake)nd¥ is the precipitable water from NCEP profiles.
942 Cases not meeting -0.6 B&11-T12)<0.6 K are marked with.

bare soil lake
case| Wncep (€M) | Trp (°C) | &(T11-Tio) (K) Trbo (°C) | 8(T11-T1o) (K)
1 0.98 14.4 0.47 13.1 0.13
2 0.84 15.5 0.29 13.9 0.09
3 1.23 14.7 0.54 13.6 0.24
4 1.46 16.8 0.13 15.7 -0.19
5 2.53 18.4 0.29 18.1 -0.13
6 1.83 21.1 0.37 19.9 0.26
7 1.68 13.8 0.40 10.1 1.05
8 1.15 15.6 0.29 13.3 0.16
9 0.81 15.9 0.32 13.9 0.22
10 1.16 20.2 0.18 18.9 -0.05
11 1.54 22.8 0.11 20.6 -0.14
12 1.09 14.8 0.26 13.2 0.10
13 2.71 17.5 -0.44 16.3 -067
14 1.77 18.5 0.29 17.1 -0.09
15 2.11 18.2 0.31 17.0 0.17
16 2.20 21.4 0.15 19.5 -0.02
17 3.34 23.3 -0.49 22.2 -067
18 1.30 15.9 0.12 14.5 -0.13
19 1.13 154 0.16 13.8 0.03
20 1.28 16.4 0.10 14.4 -0.13
21 1.33 15.5 0.32 13.9 0.17
22 1.57 20.1 0.30 18.2 0.06
23 1.37 20.6 0.23 18.1 -0.09
24 2.22 21.3 0.39 20.0 0.22
25 1.62 16.0 0.40 14.8 0.04
26 0.55 15.7 -0.15 13.5 -0.19
27 1.02 15.8 0.21 14.2 0.01
28 1.45 15.1 0.48 12.7 0.38
29 1.48 16.8 0.36 15.6 0.12
30 1.69 15.0 0.91 11.9 0.93
31 0.85 11.6 -0.20 8.9 -0.39
32 0.81 7.3 -0.32 5.1 -0.54
33 1.53 3.2 0.91 7.3 -0.07
34 0.53 7.5 -0.29 4.4 -0.47
35 0.89 9.6 -0.19 6.8 -0.36
36 0.93 10.2 -0.24 8.5 -0.41
37 1.60 15.9 0.01 12.8 -0.32
38 0.38 3.3 -0.40 0.8 -0.48
39 1.68 15.3 -0.63 13.3 -0.8%
40 1.24 7.9 -0.26 54 -0.49
41 0.87 9.1 -0.31 6.5 -0.48
42 1.80 13.1 -0.05 10.9 -0.38
43 2.42 14.3 -0.29 13.1 -0.55
44 1.80 18.2 0.06 15.2 -0.17
45 1.59 13.5 -0.08 11.5 -0.18
46 1.15 13.9 -0.08 11.4 -0.26
47 1.06 14.3 -0.53 11.2 -0%3

943
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944  Table 9. Statistics of the R-based validatiadTETaarsr-Trb) for the AATSR-derived LSTs

945 using the three options (see text) over the balesd lake sites.

946
aIgIB?i-trhm operational optimized Eq. (2)
site bare soil lake bare soill lake bare soil lake
bias (K) 0.6 2.2 0.3 -0.2 -0.2 0.0
std. dev. (K) 1.2 1.3 1.1 0.4 0.4 0.4
rmse (K) 1.3 25 1.1 0.5 0.4 0.4
min. 8T (K) -2.2 -0.4 -1.9 -11 -0.8 -0.5
max. 8T (K) 2.4 4.4 2.0 0.7 0.6 0.9
947
948
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FIGURE CAPTIONS

Figure 1. Mean emissivity §=(€11+€12)/2) and emissivity differencedé=¢;;-€15) in AATSR
bands at 11 and 12 derived from Eq. (3) over East Spain on March ulg, 2007.
Clouds and water are masked in white.

Figure 2. (a) Photograph showing part of the Valencia tistis July. (b) RGB composite of
ASTER bands 2 (0.66m), 3 (0.81um) and 1 (0.56um) showing the Valencia rice
field area and environs on August 3, 2004. (c) R&Bposite of AATSR bands at
0.87, 0.66 and 0.5&m over Valencia on July 11, 2003.

Figure 3. AATSR-derived LST (Rarsr) against ground-measured LSTy)Tor the three
LST retrieval options. The dashed line is the iné.|

Figure 4. Difference between AATSR-derived and ground-messWwST (Taatsr-Tg) as a
function of time.

Figure 5. Difference between ground-measured and R-based B8a&insd(T11-T1,) for the
datasets and atmospheric profiles indicated. Ttealiregression for all data is shown.

Figure 6. Difference between R-based LSTs obtained froml lezhosonde and NCEP/AIRS
profiles against a) precipitable water differenaed b) difference in 1h-T;, simulated
from local radiosonde and NCEP/AIRS profiles.

Figure 7. AATSR-derived LST minus R-based LST calculatechwNICEP profiles against
0(T11-T12) In the bare soil and lake sites for a) the opamat algorithm, b) the
optimized algorithm, and c) the explicit emissivitgpendent algorithm.

Figure 8. AATSR-derived LST minus R-based LST calculatechvNICEP profiles against
the actual AATSR brightness temperature differehgel 1, in the bare soil site for the
operational, the optimized and the explicit emiggidependent algorithm (Eqg. 2). The

solid lines are the linear regressions for eacbréatym.
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