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ABSTRACT 11 

The accuracy of land surface temperatures (LSTs) derived from the Advanced Along-Track 12 

Scanning Radiometer (AATSR) was assessed in a test site in Valencia, Spain from 2002-13 

2008. AATSR LSTs were directly compared with concurrent ground measurements over 14 

homogeneous, full-vegetated rice fields in the conventional temperature-based (T-based) 15 

method. We also applied the new radiance-based (R-based) method over bare soil and water 16 

surfaces, where ground LST measurements were not available. In the R-based method, 17 

ground LSTs are simulated from AATSR brightness temperatures in the 11 µm band and 18 

radiative transfer simulations using surface emissivity data and atmospheric water vapor and 19 

temperature profiles. The accuracy of the R-based ground LSTs depends on how well the 20 

profiles used in simulations represent the actual atmosphere at the time of AATSR 21 

observations. This can be checked with the difference δ(T11-T12) between the actual AATSR 22 

and the profile-based simulated difference in the 11 and 12 µm brightness temperatures (T11 23 

and T12, respectively). We found that for -0.6 K<δ(T11-T12)<0.6 K, the R-based LSTs were 24 

accurate within ±1.0 K and can be used for LST validation. For the data analyzed here, the 25 



 2 

AATSR operational algorithm overestimated the ground LST by 2 to 5 K, showing that the 26 

auxiliary data utilized within the retrieval scheme (biome classification and fractional 27 

vegetation cover maps at 0.5º×0.5º resolution) should be improved and provided at the same 28 

spatial resolution as the AATSR data (1 km2). When the AATSR algorithm was optimized 29 

with biome and fractional vegetation cover selected according to the nature of each surface, 30 

LST errors showed negligible average biases and rmse=±0.5 K for full vegetation and water, 31 

and ±1.1 K for bare soil. Furthermore, we checked an alternative algorithm explicitly 32 

dependent on emissivity, which provided accurate LSTs for all the surfaces studied, with 33 

small biases, rmse from ±0.4 to ±0.6 K and most LST errors within ±1.0 K. The algorithm 34 

requires monthly emissivity maps at 1 km2, which can be derived from classification and 35 

fractional vegetation cover estimated from optical AATSR data. The results of this paper 36 

show the high LST accuracy achievable with AATSR data in ideal conditions. While it is 37 

necessary to establish and maintain highly homogeneous T-based validation sites, the R-based 38 

method provides an alternative for the semi-operational, long-term evaluation of LST 39 

products at global scale, since it is applicable over surfaces with varied LST and atmospheric 40 

regimes where ground LST measurements are not feasible. 41 
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1. INTRODUCTION 42 

Land Surface Temperature (LST) is a key parameter in meteorological, climatological and 43 

hydrological studies since it results from the physical interactions in the surface-atmosphere 44 

system, including the energy and water fluxes (Anderson et al., 1997; Sánchez et al., 2008). 45 

LST is sensitive to local atmospheric conditions, land cover type, soil moisture and vegetation 46 

water stress. Therefore it can be used to monitor desertification, deforestation and climate 47 

change (Allen et al., 1994; Lambin and Ehrlich, 1997). Thermal infrared (TIR) remote 48 

sensing is probably the most suitable technique to obtain LST measurements at regional and 49 

global scales. Currently, there are a number of LST products derived from TIR remote 50 

sensing observations at different spatial scales and temporal periodicities. Examples are the 51 

products generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) 52 

(Wan, 2008), the Atmospheric Infrared Sounder (AIRS) (Susskind et al., 2003), the Advanced 53 

Spaceborne Thermal Emission and Reflection radiometer (ASTER) (Gillespie et al., 1998) 54 

and the Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager 55 

(SEVIRI) (PUM_LST, 2008).  56 

 57 

The Advanced Along-Track Scanning Radiometer (AATSR) (Llewellyn-Jones et al., 2001) 58 

onboard the European Space Agency (ESA) satellite Envisat provides an operational LST 59 

product at 1 km2 resolution, which is currently included in the Level 2 AATSR data 60 

(ATS_NR_2P). The operational LST algorithm is also applied to predecessors ATSR-1 and 61 

ATSR-2, then providing LSTs back to 1991. The AATSR has two on-board calibration 62 

targets, low-noise detectors and mechanical coolers that provide high radiometric accuracy 63 

and stability to the TIR data (better than 0.05 K for the 11 and 12 µm bands). Therefore 64 

instrumental error in AATSR LST estimation will be very small. The conical scanning 65 

mechanism of AATSR gives a dual-view of the Earth's surface, first in the forward view at 66 
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zenith angles about 55º, and 150 s later in the nadir view at zenith angles from 0º to 21.7º. The 67 

nominal spatial resolution of AATSR is 1 km × 1 km in the nadir view and 1.5 km × 2 km in 68 

the forward view, with a swath width of about 500 km. Equator crossing time is 10:00 a.m. 69 

local time (descending node) and revisit time is about 3 days. 70 

 71 

The operational AATSR LST product is based on the split-window technique using the 11 72 

and 12 µm bands at nadir view (Prata, 2002a). Different sets of split-window coefficients are 73 

used for 14 land cover classes or biomes predefined in a static classification map, and tuned 74 

with monthly fractional vegetation cover maps based on climatology. Both classification and 75 

fractional vegetation cover maps are implemented in the operational algorithm at spatial 76 

resolution of 0.5º×0.5º in longitude and latitude. The generation of LST products involves the 77 

correction of the satellite-observed radiances for atmospheric absorption and emission 78 

(mainly due to water vapor) and non-unity of land surface emissivity. This is a challenging 79 

problem because of the water vapor and surface emissivity variability. It is therefore 80 

necessary to assess the accuracy and precision of the products to provide LST users with data 81 

quality information. Long-term validation is required to identify possible deficiencies and 82 

subsequently introduce improvements in the algorithms. 83 

 84 

Since the launch of Envisat in 2002, the AATSR LST product has been validated with 85 

concurrent ground LST measurements performed over homogeneous surfaces such as rice 86 

fields with full vegetation cover in Valencia, Spain and inland waters in Lake Tahoe, USA 87 

(Coll et al., 2005, 2006, and 2009a). For both sites, results showed that the product 88 

overestimated the in situ LSTs by 3 to 4 K. The large LST errors were attributed to the spatial 89 

resolution of the classification and fractional vegetation cover maps (0.5º), which is too coarse 90 

to resolve the land surface heterogeneity at the AATSR 1 km2 scale. Noyes et al. (2007a) 91 
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observed both positive and negative biases, with AATSR being typically warmer (colder) in 92 

the summer (winter), which was attributed to the algorithm’s sensitivity to atmospheric water 93 

vapor, temperature and LST. In order to address the above problems, Noyes et al. (2007b) 94 

proposed several modifications in the current operational algorithm. 95 

 96 

The objective of this paper is to show the long-term accuracy assessment of AATSR derived 97 

LSTs at the Valencia test site in the period 2002-2008. We checked not only the operational 98 

LST product but also the impact of using more appropriate values for the auxiliary parameters 99 

over the test site, and the performance of an alternative split-window algorithm with explicit 100 

emissivity dependence applicable to AATSR (Galve et al., 2008). The overall aim of such 101 

validations is to stress the need for modifications in the current AATSR LST processor.  102 

 103 

Two types of validation methods were used in the present study. First, we show conventional 104 

temperature-based (T-based) validation, where concurrent ground LST measurements were 105 

directly compared with AATSR retrievals over homogeneous rice crops with full vegetation 106 

cover, much in the same way as in Coll et al. (2005, 2006 and 2009a). Due to the dissimilarity 107 

in the spatial scale between ground instruments and satellite measurements, only highly 108 

homogeneous surfaces are suitable for T-based validation, which reduces the number of 109 

biomes and climatic conditions available for a meaningful LST assessment. Therefore, we 110 

propose the new radiance-based (R-based) method (Wan and Li, 2008) that has been used for 111 

MODIS LST validation (Wan, 2008; Coll et al 2009b) and does not require ground LST 112 

measurements. Instead, ground LSTs are calculated from satellite brightness temperatures 113 

through radiative transfer simulations using surface emissivity data, and atmospheric 114 

temperature and water vapor profiles. Since homogeneous sites in 10-13 µm emissivity are 115 

more frequent than homogeneous sites in LST, the R-based method can be potentially applied 116 
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to a larger number of sites with different LST and atmospheric regimes. The R-based method 117 

is not a validation method in strict sense, because it does not rely on independently measured 118 

LSTs. However, it can be an alternative or complement to the T-based method when ground 119 

LST measurements are not feasible. 120 

 121 

The paper follows with a brief description of the operational AATSR LST algorithm and the 122 

alternative explicit emissivity-dependent algorithm. In section 3, the T-based validation 123 

results for full vegetation cover are presented and discussed. Section 4 shows the principles 124 

and sensitivity analysis of the R-based method, and the validation results for two different 125 

biomes (bare soil and lake). Finally, the main conclusions of the paper are presented in 126 

section 5.  127 

 128 

2. LST RETRIEVAL FROM AATSR 129 

LST can be retrieved from AATSR brightness temperatures in the 11 and 12 µm bands, nadir 130 

view using the split-window technique. The AATSR forward view is not used due to 131 

difficulties in accounting for angular effects on temperature and emissivity, the different field 132 

of view and the non-simultaneity of the two views, which may have an important impact over 133 

heterogeneous land surfaces (Prata, 2002a; Coll et al., 2006). The application of split-window 134 

algorithms requires that the characteristics of the surface must be well known. It can be done 135 

through explicit dependence on surface emissivity data at the two bands considered (Becker 136 

and Li, 1990; Wan and Dozier, 1996; Coll and Caselles, 1997). Another possibility is to 137 

derive specific sets of algorithm coefficients for different land cover biomes weighted by 138 

fractional vegetation cover (Kerr et al., 1992). The operational AATSR LST algorithm (Prata, 139 

2002a) adopted the latter approach. Therefore it does not depend explicitly on emissivity, but 140 

accounts implicitly for surface emissivity effects through biome-dependent coefficients and 141 
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fractional vegetation cover. The operational algorithm is described next and an alternative 142 

algorithm with explicit emissivity dependence is presented in section 2.2. 143 

 144 

2.1. Operational AATSR LST algorithm 145 

The algorithm expresses the LST (T) as a nearly-linear combination of the brightness 146 

temperatures in the 11 and 12 µm bands, T11 and T12, with coefficients determined by 147 

regression over simulated brightness temperatures and depending on the biome (i), the 148 

fractional vegetation cover (f), the precipitable water (W) and the satellite zenith viewing 149 

angle (θ):  150 

T = af,i,W + bf,i(T11-T12)
n + (bf,i + cf,i)T12 (1) 151 

af,i,W = 0.4[sec(θ)-1]W + f av,i + (1-f) as,i 152 

bf,i = f bv,i + (1-f) bs,i 153 

cf,i = f cv,i + (1-f) cs,i 154 

n = 1/cos(θ/5) 155 

Coefficients a, b, and c of Eq. (1) were determined for 13 land biomes defined in Dorman and 156 

Sellers (1989) plus a lake class (i=1 to 14), and are shown in Table 1 (Prata, 2002b). For each 157 

land cover biome, two separate sets of coefficients are specified for the fully vegetated surface 158 

(subscript v) and for the bare surface (subscript s), which are weighted by the fractional 159 

vegetation cover f. For some biomes (i=4, 7, 9, 10, 12, 13, and 14), coefficients are identical 160 

for the vegetated and bare surface, which makes the algorithm insensitive to f. For the lake 161 

class, different coefficients are given for day and night. In Eq. (1), all temperatures are in ºC.  162 

 163 

Since the algorithm only uses the nadir view (θ<21.7º), the impact of W on the LST 164 

calculated from Eq. (1) is rather small, e.g., a LST difference <0.03 K for a W variation of 1 165 
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cm. For the same reason, coefficient n is close to unity and the algorithm is nearly linear on 166 

T11-T12. Given that 1<n<1.0029, the difference with the LST derived using n=1 in Eq. (1) is 167 

between 0 and 0.03 K for T11-T12=3 K. Similarly, the impact of θ in the algorithm, both 168 

through coefficients af,i,W and n, is small. Taking θ=0º instead of the correct angle yields 169 

differences in the calculated LST less than 0.06 K for W=3 cm. 170 

 171 

The ancillary data necessary for the application of the algorithm (i, f and W) are tabulated at 172 

spatial resolution of 0.5º×0.5º in longitude/latitude. Land biomes are determined from global 173 

classification and are static. The fractional vegetation cover has monthly variability, and is 174 

obtained from Dorman and Sellers (1989) and an estimate of the “greenness” derived from 175 

global normalized difference vegetation index from the International Satellite Land-Surface 176 

Climatology Project (ISLSCP). Precipitable water data are taken from the NASA Water 177 

Vapor Project (NVAP) global climatology at monthly intervals. The target accuracy of the 178 

LST product is ±1.0 K at nighttime and ±2.5 K at daytime. For more details on the algorithm 179 

and the operational implementation see Prata (2002a). 180 

 181 

As pointed out in previous validation studies (Coll et al., 2005, 2006, and 2009a), the 0.5º 182 

resolution of the ancillary data is too coarse to account for the natural heterogeneity of LST at 183 

the AATSR scale. Noyes et al. (2007b) and Coll et al. (2009a) also noted the high sensitivity 184 

of the LST retrievals to the fractional vegetation cover. Noyes et al. (2007b) proposed to 185 

increase the resolution of the biome and f maps to 1-3 km2, to use the GLOBCOVER biome 186 

map derived from Envisat/Medium Resolution Imaging Spectrometer (MERIS), and to 187 

increase the accuracy of the fractional cover by introducing an observational component, e.g., 188 

estimating f by using vegetation indices derived from the AATSR optical bands. 189 

 190 
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2.2. Explicit emissivity-dependent LST algorithm 191 

As an alternative, the split-window method can be applied with algorithms explicitly 192 

dependent on the surface emissivity at the 11 and 12 µm AATSR bands, namely the mean 193 

emissivity (ε=(ε11+ε12)/2) and the band emissivity difference (∆ε=ε11-ε12), which are the 194 

physical magnitudes accounting for the effect of land surface biome and fractional vegetation 195 

cover on TIR measurements. This is the approach adopted by the generalized split-window 196 

algorithm (Wan and Dozier, 1996) used to generate the MODIS LST products MOD11_L2 197 

(Terra) and MYD11_L2 (Aqua) (Wan, 2008), and by the MSG-SEVIRI LST product 198 

(PUM_LST, 2008). This approach is feasible since the emissivity values of natural surfaces at 199 

10-13 µm show relatively small variability at global scale. According to Pinheiro et al. 200 

(2004), ε and ∆ε range from 0.968 to 0.990 and from -0.014 to 0.009, respectively, for the 201 

Advanced Very High Resolution Radiometer (AVHRR) bands 4 and 5, which are comparable 202 

to the AATSR bands. Similarly, Snyder et al. (1998) found ε varying from 0.969 to 0.990 and 203 

∆ε from -0.006 to 0.011 for the MODIS split-window bands 31 and 32. However, the 204 

sensitivity of LST to these small emissivity changes can be large (typically ±0.8 K for 205 

uncertainty of ±0.010 in both ε11 and ε12; Galve et al., 2008). 206 

 207 

The explicit emissivity-dependent split-window algorithm proposed here is based on the 208 

model of Coll and Caselles (1997) particularized for AATSR as described in Galve et al. 209 

(2008). It can be written as 210 

T = T11 + 0.02 + 0.782(T11-T12) + 0.302(T11-T12)
2+ 211 

 + (1-ε)[53+1.13(W/cosθ)-1.023(W/cosθ)2] - ∆ε[79-11.06(W/cosθ)] (2) 212 

The algorithm coefficients were obtained from radiative transfer simulations of AATSR 213 

brightness temperatures using a database of 382 continental, cloud-free radiosonde profiles 214 
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with global coverage and precipitable water up to 6 cm (Galve et al., 2008). The quadratic 215 

dependence on T11-T12 accounts for the increase of the atmospheric attenuation for large 216 

amounts of atmospheric water vapor. The algorithm depends explicitly on precipitable water 217 

in the emissivity terms only; however, the impact of W in LST is small (typically less than 0.1 218 

K for a variation of 0.5 cm in W). Eq. (2) does not take into account directional temperature 219 

and emissivity effects, which are expected to be small in the nadir view of AATSR (θ<21.7º). 220 

In Eq. (2), temperatures can be either in K or ºC. 221 

 222 

Since emissivity only appears explicitly in the last two terms of the right-hand side of Eq. (2), 223 

it seems that atmospheric and emissivity effects are separated in the LST retrieval. However, 224 

it should be noted that emissivity effects are also implicit in the “non-emissivity” or 225 

“atmospheric” part of Eq. (2) through the brightness temperature T11 and the temperature 226 

difference T11-T12, which are determined by both the atmosphere and the surface emissivity. 227 

For surfaces where ∆ε is positive (negative), T11-T12 is larger (smaller) than it would be for 228 

the same atmosphere over a black-body. Therefore, when T11-T12 is multiplied by 229 

“atmospheric” coefficients in Eq. (2), there is an over or under-correction of atmospheric 230 

effects depending on the sign of ∆ε. The over or under-correction induced by emissivity is 231 

compensated by the corresponding emissivity term in Eq. (2). Similarly, emissivity effects on 232 

T11 are also accounted for by the emissivity terms. Note that the theoretical definitions of the 233 

“emissivity” coefficients contain the “atmospheric” coefficients (see Eq. 5 and 6 of Coll and 234 

Caselles, 1997) 235 

 236 

The critical issue for the application of the algorithm is the need of accurate emissivity maps 237 

as ancillary data. For the present study, emissivity maps were derived using the vegetation 238 

cover method (Valor and Caselles, 1996), which is based on a physical surface model and 239 
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estimations of fractional vegetation cover through spectral indices. In this method, the 240 

emissivity in band k is estimated through the relationship: 241 

εk = εkv f + εkg (1-f) + 4 <dεk> f (1-f) (3) 242 

where εkv and εkg are the vegetation and ground emissivity, respectively, <dεk> is the 243 

maximum cavity term, and f is the fractional vegetation cover. The cavity term accounts for 244 

the effect of radiance internal reflections between the different components of a structured and 245 

rough surface (Caselles and Sobrino, 1989). 246 

 247 

Since εkv, εkg and <dεk> depend on the surface type, they were obtained by combining the 248 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Spectral 249 

Library (Baldridge et al. 2009) and the GLOBCOVER (GLC) global classification (Bicheron 250 

et al., 2008). The ASTER Spectral Library is the most extensive published dataset of TIR 251 

reflectance spectra including both natural (soils, rocks, vegetation, minerals) and manmade 252 

(asphalt, tar, concrete, brick, tile) materials. The GLC biome map provides the global 253 

classification with best spatial resolution (300 m) to date, which is one of the key factors to 254 

improve classification accuracy (Herold et al., 2008; Heiskanen, 2008). It is generated from 255 

MERIS data (with reasonably good spectral resolution) using an unsupervised classification 256 

regional expert-tuned procedure similar to the predecessor GLC2000 classification 257 

(Bartholomé and Belward 2005), and is compatible with the standardized legend of the United 258 

Nations Food and Agriculture Organization Land Cover Classification System (LCCS). It 259 

should be noted that the approach used here for modeling surface emissivity based on land 260 

surface classes and fractional vegetation cover is similar to that used by the operational 261 

AATSR LST algorithm to define the coefficients of Eq. (1). 262 

 263 
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Surface type maps were derived from GLC data. Each GLC surface type was assigned an 264 

emissivity class depending on the soil and vegetation type contained and the surface structure 265 

(see Table 2), and then the vegetation and ground emissivities for each class were estimated 266 

from the ASTER Spectral Library data. Using this procedure, the initial 22 classes (and 267 

associated subclasses) were reduced to only 10 classes, taking into account the components 268 

included in each class and the similarity between surface structures (Table 2).  269 

 270 

Table 3 gives the corresponding εkv, εkg and <dεk> values for Eq. (3), or alternatively effective 271 

emissivity values, for each class. For the case of vegetated surfaces, classes were grouped 272 

attending to structure (low grasses/crops, shrubs/trees lower than 5 m, shrubs/trees higher than 273 

5 m), background (soil or water depending on flooding conditions), and vegetation type 274 

(green grasses, evergreen or deciduous shrubs/trees). In each case, the emissivity values for 275 

vegetation and ground (or water) were calculated using the emissivity spectra of the samples 276 

given in the ASTER Spectral Library. The spectra were first convolved with the AATSR 277 

spectral response curves for the 11 and 12 µm bands to get the band emissivity values. These 278 

values were then averaged for the selected samples. In the case of soils, all samples available 279 

in the library (52) were used, which showed low variability in these bands (standard deviation 280 

smaller than ±0.005). There are only four vegetation samples. The green grass sample was 281 

used for classes 1 and 3, the average between conifer and deciduous samples for classes 2 and 282 

4, the conifer sample for class 6, and the deciduous sample for class 5. Rocks were excluded 283 

since they should not be usual in these surface types.  284 

 285 

For vegetated surfaces with a significant structure (emissivity classes 2, 4, 5 and 6) the 286 

maximum cavity term was determined with a simulation procedure. According to Caselles 287 

and Sobrino (1989), the cavity term for nadir observation is given by dεk=(1-εkg)εkvF(1-f), 288 
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where F is a shape factor that depends on the height and separation between the surface 289 

elements, and considers the energy transmission between them. The cavity term was 290 

simplified and parameterized in terms of fractional vegetation cover only and a maximum 291 

cavity term (<dεk> in Eq. 3) that represents the maximum value for a given surface geometry 292 

with f ranging from 0 to 1 (Valor and Caselles, 1996). The cavity term was calculated for 293 

different geometric structures, using the vegetation and ground/water emissivities obtained 294 

above, and for fractional vegetation cover ranging from 0 to 1. The maximum value for each 295 

case was selected. Then, the average of the maximum values was calculated for each class, 296 

resulting in the <dεk> values given in Table 3. 297 

 298 

In the case of non-vegetated surfaces, such as bare rock, water, or snow and ice, average 299 

values were calculated from the samples provided by the ASTER Spectral Library (389 rock 300 

samples, 2 water samples and 4 snow and ice samples), and a unique effective value for each 301 

AATSR band was calculated. Certainly, rock emissivities show high standard deviations, and 302 

probably it would be necessary to distinguish them using additional rock maps. Finally, 303 

effective emissivity values were calculated for urban areas using the spectra for manmade 304 

materials (tiles, asphalt, concrete, etc.) and considering regular city structures.  305 

 306 

Fractional vegetation cover required in Eq. (3) was calculated from normalized difference 307 

vegetation index (NDVI) and reflectance values in AATSR red (0.66 µm) and near infrared 308 

(0.87 µm) bands using the following relationship (Valor and Caselles, 1996): 309 
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where NDVI is the pixel vegetation index, NDVIs and NDVIv are the index values for bare 311 

soil and full vegetation, and factor K is 312 

s1s2

v1v2K
ρ−ρ
ρ−ρ

=  (5) 313 

where ρ1v and ρ2v are respectively the red and near infrared reflectance values over full 314 

vegetation, and ρ2s and ρ1s are the corresponding reflectances over bare soil. All these 315 

coefficients can be extracted from the AATSR scene itself. As an example, Figure 1 shows 316 

mean emissivity (ε=(ε11+ε12)/2) and band emissivity difference (∆ε=ε11-ε12) maps derived for 317 

the Eastern part of Spain using two AATSR scenes acquired on March and July, 2007. In 318 

order to minimize the impact of cloud cover, the procedure can be repeated for several dates 319 

along the year to produce monthly emissivity composites at regional or global scales. 320 

 321 

3. T-BASED VALIDATION 322 

The T-based method for satellite LST validation is the direct comparison with ground 323 

measurements performed at a field site concurrently with the satellite overpass. Thus, it 324 

provides an independent evaluation of the radiometric quality of the satellite instrument 325 

together with the ability of the LST retrieval algorithm to correct for atmospheric and 326 

emissivity effects. However, it is necessary that the LST observed by the ground instruments 327 

at several points over the test site is truly representative of the average LST over the 328 

instantaneous field of view of the satellite sensor, for which the site must be thermally 329 

homogeneous from the point scale to several kilometers. Since most of the Earth's surface is 330 

heterogeneous at these spatial scales, high-quality ground validation data are limited to few 331 

biomes such as lakes, silt playas, grasslands and agricultural fields collected during dedicated 332 

campaigns (Wan et al., 2002 and 2004; Coll et al., 2005). An exception is the Lake Tahoe 333 
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automated validation site (Hook et al., 2007), where lake surface temperatures are 334 

continuously measured since 1999. 335 

 336 

A homogeneous site for LST validation was established in a large (>30 km2), flat area of rice 337 

fields close to Valencia, Spain since 2002. In July and August, rice crops are well irrigated 338 

and attain nearly full vegetation cover (see Figure 2). It makes the site highly homogeneous in 339 

terms of both surface temperature and emissivity and eases the radiometric measurement of 340 

LST. Ground data from the Valencia test site have been used in previous studies (Coll et al., 341 

2005, 2006, 2007 and 2009a). The daytime thermal homogeneity of the site was assessed with 342 

AATSR and MODIS data at 1×1 km2, and with ASTER TIR data at 90×90 m2. Results 343 

showed typical variability (standard deviation) ranging from 0.2 to 0.5 K depending on the 344 

spatial resolution.  345 

 346 

Several TIR radiometers were distributed over a 1 km2 grid to measure the ground LST and its 347 

variability concurrent to AATSR daytime overpasses (10:20-10:40 UTC). The instruments 348 

were two CIMEL CE 312-1 radiometers with four bands 8.0-13.3 µm, 11.5-12.4 µm, 10.2-349 

11.3 µm, and 8.3-9.3 µm) (Brogniez et al., 2003), one CIMEL CE 312-2 radiometer with six 350 

bands (8.0-13.3 µm, 8.3-8.6 µm, 8.5-8.9 µm, 9.0-9.3 µm, 10.2-11.0 µm, and 10.9-11.7 µm), 351 

and two Everest model 112.2L thermometers (8-13 µm) (www.everestinterscience.com). The 352 

instruments were calibrated against a reference blackbody before and after each field 353 

measurement day and intercompared in the field. The ground LSTs were calculated by 354 

averaging the ground temperatures measured by the available radiometers within three 355 

minutes centered on the satellite overpass time. The standard deviation of the ground 356 

temperatures was calculated as a measure of the spatial and temporal variability of LST 357 
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(typically ≤0.5 K). More details on the ground LST measurements can be found in Coll et al. 358 

(2005 and 2006).  359 

 360 

Radiometric temperatures were corrected for emissivity effects, including the reflection of the 361 

sky irradiance. Surface emissivity was measured in the field using the box method (Rubio et 362 

al., 2003) for the four channels of the CE 312-1 radiometers. The CE 312-1 channels at 10.2-363 

11.3 and 11.5-12.4 µm are similar to the AATSR bands at 11 and 12 µm, respectively. A total 364 

of 30 emissivity measurements were taken at different spots on the test site for each channel. 365 

More details on the field emissivity measurements are given in Coll et al. (2007). We 366 

obtained uniform and high emissivity values (ε=0.985±0.005) with small spectral variation in 367 

the 8-13 µm range, as expected for full vegetation cover.  368 

 369 

Together with the average ground LST, we estimated the total uncertainty including the 370 

radiometer calibration error, the emissivity correction error (∼0.2 K for measured emissivity 371 

uncertainty of 0.005), and the LST variability. A total of 28 cloud-free, daytime concurrences 372 

of ground and AATSR data were collected in July and August, 2002-2007. Table 4 lists the 373 

ground LST (Tg) and uncertainty for each case. The center of the 1 km2 grid was at 374 

0º17’50’’W, 39º14’27’’N in 2002-2003; 0º17’43”W, 39º15’01”N in 2004; and 0º18’28”W, 375 

39º15’54”N in 2005-2007. For each case, we extracted the concurrent AATSR brightness 376 

temperatures in the 11 and 12 µm bands, nadir view from L1b scenes (ATS_TOA_1P, 377 

georeferenced, top of atmosphere data). We used arrays of 3×3 pixels centered on the 378 

measurement site, for which the average value was calculated (see Table 4). The standard 379 

deviation of T11 and T12 for the 3×3 pixels was typically 0.1 K. 380 

 381 

For each validation case, Table 4 shows the AATSR-derived LST (TAATSR) as obtained from: 382 
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 383 

(i) The operational LST product in the AATSR Level 2 data. It is the result of applying Eq. 384 

(1) with the operational classification and fractional vegetation cover maps. The Valencia test 385 

site is classified as biome i=6 (broadleaf trees with ground cover) and the assigned f value is 386 

0.40-0.47 in July-August. The data in Table 4 are the average for 3×3 pixels centered on the 387 

site. 388 

 389 

(ii) The optimized AATSR algorithm, in which we assigned biome i=8 (broadleaf shrubs with 390 

ground cover) and f=1 (full vegetation cover) in Eq. (1) for application to the brightness 391 

temperatures in Table 4. This selection of i and f yields the best agreement of LSTs derived 392 

from Eq. (1) with the ground data (Coll et al., 2009a). 393 

 394 

(iii) The explicit emissivity-dependent algorithm (Eq. 2) applied to the brightness 395 

temperatures using the emissivity values obtained from Eq. (3) (ε=0.986 and ∆ε=-0.005 at the 396 

site, with f=0.91, emissivity class 1, and GLC class 11) and the mean precipitable water for 397 

July and August (2.5 and 2.7 cm, respectively) as obtained from the National Centers for 398 

Environmental Prediction (NCEP) global tropospheric analyses product (Kalnay et al., 1996). 399 

 400 

Figure 3 shows the comparison between TAATSR and Tg, and Figure 4 plots the LST error 401 

δT=TAATSR-Tg as a function of time for the three options of LST retrieval. The operational 402 

LST product clearly overestimated the ground LST by 2 to 5 K depending on the validation 403 

case. For the 28 cases, the average value of δT or bias was 3.6 K with standard deviation of 404 

0.7 K. However, the optimized AATSR algorithm and Eq. (2) agreed very well with each 405 

other and with the ground LSTs, δT values ranging between -1.0 and +1.0 K for most of the 406 

cases. In Figure 3, the correlation coefficient (R) between TAATSR and Tg is 0.88 for the 407 
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optimized algorithm and 0.90 for Eq. (2). For the optimized algorithm the average bias was 408 

0.2 K and the standard deviation was 0.5 K, yielding rmse=±0.5 K, while for Eq. (2) the bias 409 

was 0.4 K, and the standard deviation was 0.5 K (rmse=±0.6 K). Although the validation 410 

cases are few, covering one surface type with limited atmospheric and LST variability, the 411 

results show the good accuracy achievable with AATSR data. On the other hand, Figure 4 412 

suggests that the positive bias in AATSR LSTs is slightly increasing in the 2006 and 2007 413 

campaigns. This effect may be due to the small number of validation cases available for the 414 

last two years, and it will be investigated in forthcoming field campaigns. 415 

 416 

The large overestimation given by the operational LST product is due to incorrect 417 

classification and fractional vegetation cover assigned to the test site. Using the same biome 418 

(i=6) but setting f=1 in Eq. (1), the AATSR algorithm would yield better agreement with the 419 

ground data (δT between 0.4 and 2.4 K, average bias of 1.4 K). As an alternative to the 420 

AATSR classification, Noyes et al. (2007b) considered high-resolution (1 km) global biome 421 

classification maps such as those from the University of Maryland (UMD) (Hansen et al., 422 

2000) and the International Geosphere-Biosphere Project (IGBP) (Loveland et al., 1998). The 423 

Valencia site is classified as cropland in both cases, which corresponds to AATSR biome 12 424 

(broadleaf-deciduous trees with winter wheat). Using i=12 and f=1 in Eq. (1), the AATSR-425 

derived LSTs overestimated the ground LSTs by a range from 1.2 to 3.3 K for the 28 426 

validation cases, with average bias of 2.3 K.  427 

 428 

Excluding the optimized algorithm mentioned above (i=8, f=1), the best agreement with the 429 

ground LST was obtained for vegetation biomes 2 (broadleaf deciduous trees), 3 (broadleaf 430 

and needleleaf trees) and 5 (needleleaf-deciduous trees) using f=1, resulting in biases of -0.3, 431 

-0.4 and 0.5 K, respectively. Other vegetation biomes (e.g., 1, 4, 9, 10 and 12 in Table 1) 432 
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yielded large positive biases (2.3-2.5 K) even with f=1. In terms of surface emissivity, all the 433 

above fully-vegetated biomes should be quite similar, with ε and ∆ε values close to those used 434 

for the Valencia site and thus the retrieved LSTs should be similar. However, they produce 435 

rather different LST estimates showing the high sensitivity of the AATSR LST algorithm to 436 

the biome assignation. Noyes et al. (2007b) also noted a high sensitivity of the algorithm to 437 

the fractional vegetation cover. For comparison, an uncertainty of ±0.005 in both ε11 and ε12 438 

results in an LST uncertainty of ±0.5 K in the explicit emissivity-dependent algorithm (Eq. 2). 439 

 440 

4. R-BASED VALIDATION 441 

The R-based method (Wan and Li, 2008) does not require ground LST measurements and 442 

thus provides an alternative for satellite LST validation over a wide range of biomes and LST 443 

and atmospheric regimes. The ground temperatures are calculated from radiative transfer 444 

simulations using at-sensor brightness temperatures in the 11 µm band, near concurrent 445 

atmospheric temperature and water vapor profiles and surface emissivity measurements. As 446 

mentioned above, emissivity in AATSR bands at 11 and 12 µm is high and exhibits small 447 

variations for most land cover biomes, so the R-based method could be applied, with care, 448 

globally. In this study, radiative transfer simulations were performed using the MODTRAN 4 449 

code (Berk et al., 1999). In the next section, the R-based method is described. In section 4.2, 450 

the feasibility of the method is assessed through a comparison with ground LST 451 

measurements and a sensitivity analysis is performed. R-based validation results for two new 452 

biomes (bare soil and lake) are presented in section 4.3.  453 

 454 

4.1. Description of the R-based method 455 
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The R-based method is physically based on the radiative transfer equation. For a surface at 456 

temperature T and with spectral emissivity ελ, the at sensor spectral radiance measured in 457 

band k at zenith viewing angle θ (Lk
sen

) can be written as 458 

Lk
sen

 = ∫
∞ λ
0 k )(f { [ελBλ(T) + (1-ελ) π

↓
λF

]τλ(θ) + Lλ
↑(θ)} dλ (6) 459 

where fk(λ) is the normalized spectral response function of band k ( λλ∫
∞

d)(f
0 k =1), Bλ is the 460 

Planck function for blackbody spectral radiance, τλ is the atmospheric transmittance, Lλ
↑ is 461 

the atmospheric radiance emitted towards the sensor, and Fλ
↓ is the downwelling sky 462 

irradiance (Lambertian reflection assumed). The brightness temperature, Tk, corresponding to 463 

the at-sensor radiance is defined as Lk
sen

=Bk(Tk), Bk being the band-averaged Planck function,  464 

Bk(T*) = λλ∫
∞

λ d*)T(B)(f
0 k  (7) 465 

where T* is a generic temperature. Using Eq. (7), look-up tables for T*-Bk(T*) conversion 466 

can be generated for a given band at small temperature steps in order to calculate Tk from 467 

Lk
sen

. Equation (6) is the basis of the so-called forward simulation, in which the at-sensor 468 

radiances or brightness temperatures are simulated from surface temperature and emissivity 469 

data, and atmospheric parameters (τλ, Lλ
↑, and Fλ

↓) calculated with MODTRAN 4 from 470 

temperature and water vapor profiles. Similarly, Eq. (6) can also be used for inverse 471 

simulation, that is, the calculation of surface temperature (T) from satellite Tk or Lk
sen

. In this 472 

case, the right-hand side of Eq. (6) can be calculated iteratively for different T values until it 473 

agrees with the prescribed Lk
sen

 value. 474 

 475 

The R-based method requires accurate temperature and water vapor profiles representing the 476 

actual atmospheric conditions at the time of the satellite observation. The accuracy of the 477 
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atmospheric profiles can be assessed with the test suggested by Wan and Li (2008), which 478 

involves the calculation of δ(T11-T12)=(T11-T12)obs-(T11-T12)sim, that is, the difference between 479 

the T11-T12 value observed by AATSR and the T11-T12 value simulated from the atmospheric 480 

profiles and the surface emissivity data. The test relies on the fact that the atmospheric effect 481 

is larger at 12 µm, owing to the water vapor continuum absorption. Then T11-T12 is usually 482 

positive and increases with the atmospheric water vapor. When the atmospheric profile used 483 

for the R-based LST calculation is over (under) correcting the atmospheric effect, then δ(T11-484 

T12)<0 (>0) since the calculated, profile based T11-T12 value is larger (smaller) than the actual 485 

AATSR value. Therefore, δ(T11-T12) should be close to zero when the atmospheric profiles 486 

used in simulations represent the real atmospheric conditions and the effect of the surface 487 

emissivity uncertainties is small. The R-based method can be summarized as follows: 488 

 489 

a) Calculation of the R-based in situ LST (TR-b) from the 11 µm band at-sensor radiance using 490 

atmospheric profiles and surface emissivity data (inverse simulation). The 11 µm band is used 491 

because it is less affected by variations in atmospheric water vapor and temperature. The LST 492 

error (δT) is the difference between the product LST and TR-b. 493 

 494 

b) Calculation of brightness temperatures in bands at 11 and 12 µm using TR-b as ground LST, 495 

atmospheric profiles and surface emissivity data (direct simulation). The difference δ(T11-T12) 496 

between the actual and the simulated T11-T12 value is obtained. Note that the brightness 497 

temperature T11 simulated here is equal to the measured T11 used in step a). Thus, δ(T11-T12) 498 

is equal to the difference between the simulated and the measured brightness temperature T12. 499 

Since the 12 µm band is not used in the TR-b calculation, it provides an independent 500 

assessment of the atmospheric profiles. 501 

 502 
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A good knowledge of the spectral emissivity of the site is necessary for the application of the 503 

method. It should be applied over long time periods at each site to analyze the relationship 504 

between δT and δ(T11-T12) and select the cases with δ(T11-T12) values around zero for which 505 

the error introduced by the atmospheric profiles is small.  506 

 507 

4.2. Feasibility and sensitivity analysis of the R-based method  508 

In order to show the feasibility of the R-based method, we compared the ground LSTs derived 509 

from radiative transfer simulations with concurrent, ground-measured LSTs. Two ground LST 510 

datasets were used. (1) The Valencia data shown in Table 4 corresponding to full vegetation 511 

cover, with LSTs ranging from 25 to 31 ºC and W ranging from 2 to 4 cm. (2) A set of 99 512 

ground measurements of lake surface temperature from Lake Tahoe, USA (Hook et al., 2007) 513 

concurrent to AATSR overpasses in 2002 and 2003, both daytime and nighttime, which have 514 

been used previously in Coll et al. (2009a). Cloud-free conditions were ensured by means of a 515 

statistical cloud masking algorithm (any scenes with a mean <4.4 ºC and/or a standard 516 

deviation >0.44 K were excluded). For the Lake Tahoe data, surface temperature ranges from 517 

7 to 22 ºC, and W from 0.2 to 2 cm. Therefore, the two datasets cover a wide range of LST 518 

and atmospheric conditions. Moreover, the two sites are homogeneous in terms of emissivity 519 

with well-known emissivity values based on ground measurements (ε11=0.985 and ε12=0.980 520 

for the rice fields) or spectral libraries (ε11=0.991 and ε12=0.985 for water; Baldridge et al., 521 

2009), which facilitates the application of the R-based method. 522 

 523 

For the Valencia site, we used three types of atmospheric profiles. Radiosonde balloons were 524 

launched at the test site near-concurrently with AATSR overpasses for 5 cases (cases 16, 19, 525 

21, 23, and 27 in Table 4). Since local radiosondes measurements are seldom and limited to 526 

dedicated campaigns, we also used the NCEP global tropospheric analyses product (Kalnay et 527 
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al., 1996), which provides global atmospheric data at 1º×1º grids at 00:00, 06:00, 12:00 and 528 

18:00 UTC. For each case in Table 4, the NCEP profiles for the four grids closest to the site 529 

and the two times closest to the overpass were linearly interpolated to obtain the NCEP 530 

profile at the site and the overpass time. Finally, we also used atmospheric profiles derived 531 

from the Aqua/AIRS instrument (Susskind et al., 2003) with spatial resolution of 45 km and 532 

overpass time at the site between 12:30 and 13:30 UTC. AIRS profiles were available for 16 533 

cases in Table 4 (10-12, 14, 16-23, and 25-28). For the Lake Tahoe dataset, we only used 534 

spatially and temporally interpolated NCEP atmospheric profiles for the 99 validation cases. 535 

 536 

The profiles were entered in MODTRAN 4 to calculate the atmospheric transmittance and 537 

emitted upwelling and downwelling radiances. Using Eq. (6), we calculated the ground LST 538 

(TR-b) from the corresponding brightness temperature T11, and the difference δ(T11-T12) for 539 

each case. Figure 5 plots the difference between the ground-measured LSTs and the R-based 540 

LSTs (δT=Tg-TR-b) against δ(T11-T12) for all the sites and atmospheric profiles considered (49 541 

cases in Valencia and 99 in Lake Tahoe). For all datasets, a close relationship (R=0.91) is 542 

observed between δT and δ(T11-T12), with large positive (negative) values of δT 543 

corresponding to large positive (negative) values of δ(T11-T12), and small LST errors 544 

associated with a narrow range of δ(T11-T12) values in the vicinity of zero. The correlation is 545 

slightly higher for the Lake Tahoe dataset alone because the uncertainties in the ground LST 546 

measurements and the water emissivity are smaller than in Valencia, as well as the 547 

precipitable water. 548 

 549 

For most of the cases with local radiosondes, the δT and δ(T11-T12) values were relatively 550 

small, showing that the atmospheric profiles were accurate. The NCEP profiles provided 551 

large, negative values of δT and δ(T11-T12) in some cases, meaning that the simulations 552 
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overestimated the atmospheric effect. For other cases, however, the NCEP profiles yielded 553 

accurate results with δT and δ(T11-T12) close to zero. Most of the cases with AIRS profiles 554 

resulted in large, positive δT and δ(T11-T12) values. The bad performance of AIRS profiles 555 

may be due to the temporal gap between Envisat and Aqua (2-3 h.), and the coarse spatial 556 

resolution of AIRS data (45 km). The data in Figure 5 correspond to a wide set of LST and 557 

atmospheric regimes and cover wide ranges of δT and δ(T11-T12). The linear regression for all 558 

data yields δT=1.78×δ(T11-T12)+0.02. From it, we can obtain -0.6 K<δ(T11-T12)<0.6 K as the 559 

condition for which the error in the calculated R-based LST is within ±1.0 K.  560 

 561 

The data in Figure 5 are affected by uncertainties in both the ground LSTs and the radiative 562 

transfer calculations involved in the R-based method. A sensitivity analysis was performed to 563 

assess the accuracy of the simulated TR-b and T11-T12 values using the radiosonde profile of 564 

case 16 as a representative case (W=2.5 cm). The effect of atmospheric uncertainties was 565 

simulated in two ways. First, the water vapor mixing ratio was increased by 10% at each 566 

profile level. Second, the air temperature was increased by 1 K at each level. These changes 567 

represent small temporal and spatial atmospheric variations or typical radiosonde errors. 568 

Table 5 shows the effect of the atmospheric variations on TR-b (inverse simulation), T11, T12 569 

(forward simulation) and the difference T11-T12. Atmospheric effects on T11 and T12 have the 570 

same sign, so they cancel in part in T11-T12. The uncertainty in the MODTRAN 4 code was 571 

assumed as the root square sum (rss) of the errors due to the water vapor and air temperature 572 

changes. 573 

 574 

We assumed an uncertainty of 0.005 in ε11 and ε12, which is justified for vegetated surfaces 575 

and is a typical uncertainty in field emissivity measurements (Rubio et al., 2003). However, 576 

larger uncertainties may be expected for bare surfaces. For the present case, the resulting 577 
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uncertainty in the simulated temperatures is shown in Table 5. Emissivity uncertainties are 578 

regarded as random and may have opposite signs in the two bands. For this reason, the 579 

emissivity uncertainty in the simulated T11-T12 is obtained as the rss of the errors in T11 and 580 

T12. Finally, the total uncertainty in the simulated temperatures is estimated as the rss of the 581 

above atmospheric, MODTRAN 4 and emissivity errors, resulting in ±0.7 K for TR-b and ±0.4 582 

K for the simulated T11-T12.  583 

 584 

NCEP and AIRS profiles may be less accurate than assumed in the previous uncertainty 585 

analysis, thus the errors in the calculated TR-b and T11-T12 may be larger. To assess the 586 

accuracy of the NCEP and AIRS profiles, we compared the five cases of the Valencia dataset 587 

with local radiosondes with the same cases with NCEP and AIRS profiles. If we assume that 588 

the local radiosondes represent accurately the atmospheric state, then the difference between 589 

TR-b calculated from radiosonde and NCEP/AIRS profiles is the LST error due to the incorrect 590 

profile. Similarly, the difference between the radiosonde T11-T12 and the corresponding 591 

NCEP/AIRS value is the δ(T11-T12) difference due to the incorrect profile. Figures 6a and 6b 592 

show the difference δT between radiosonde and NCEP/AIRS TR-b values against the 593 

precipitable water difference Wrad-WNCEP/AIRS and δ(T11-T12), respectively. δT shows a good 594 

correlation (R=0.82) with the water vapor differences, with NCEP/AIRS overestimating 595 

(underestimating) radiosonde TR-b when NCEP/AIRS water vapor overestimated 596 

(underestimated) radiosonde water vapor. Furthermore, the correlation between δT and δ(T11-597 

T12) is excellent (R=0.94) and shows a similar behavior as in Figure 5. The correlation in 598 

Figure 6b is higher than in Figure 6a because the difference in the R-based LSTs depends not 599 

only on the precipitable water difference but also on the difference in temperature profiles and 600 

viewing angle, and all these effects are also largely reflected in δ(T11-T12). 601 

 602 
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The results of this section show that large errors in R-based LSTs are due to inappropriate 603 

atmospheric profiles, and that the δ(T11-T12) test may be used to select the profiles that 604 

reasonably represent the actual atmosphere for the AATSR observation. Cases meeting the 605 

condition -0.6 K<δ(T11-T12)<0.6 K correspond to errors within ±1.0 K in the calculated in situ 606 

LST, which is appropriate for LST validation. This condition was derived using ground 607 

measured LSTs covering a wide range of conditions (Figure 5), and is compatible with the 608 

preceding uncertainty analysis and the δT-δ(T11-T12) relationship shown in Figure 6b. 609 

 610 

4.3. Application of the R-based method 611 

The R-based method was applied to two different biomes in the Valencia test site for a total of 612 

47 cloud-free, daytime and nighttime AATSR scenes from March to early May in 2003-2008. 613 

Cloud-free conditions were assessed by means of visual inspection and threshold tests using 614 

LST-T11, T11-T12, and the standard deviation of T11. On these dates, rice fields are fallow and 615 

the soil is left dry before the start of the growing season in mid May. Therefore the site 616 

appears as a wide area of uniform, dry bare soil. As for the summer full-cover conditions, we 617 

assessed the uniformity of the site with satellite data at different resolutions (AATSR and 618 

MODIS at 1 km, ASTER and Landsat at ∼100 m) and field surveys. We tried to use the bare 619 

soil for T-based validation, but preliminary tests showed that the ground-scale thermal 620 

heterogeneity of the site was higher than for the full-vegetation case, and thus the ground 621 

LSTs may not be accurate enough for AATSR LST validation. For this reason, we applied the 622 

R-based method to the bare soil site using concurrent NCEP atmospheric profiles (local 623 

radiosondes were not available), and laboratory emissivity measurements. Different samples 624 

were taken from the site for mineralogy analysis, resulting in homogeneous composition of 625 

14% sand, 35% clay, 4.5% organic matter and 44% carbonate (Mira et al., 2007). According 626 

to the measurements (30 per channel), the soil emissivity was quite uniform with values 627 
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ε11=0.957 and ε12=0.954 (uncertainty of ±0.005) for dry conditions (Mira et al., 2007). 628 

Additionally, we applied the R-based method over the nearby Albufera Lake (about 7 km in 629 

diameter, a few kilometers north of the rice fields site, see Fig. 2b) using the same AATSR 630 

scenes and NCEP profiles, and taking ε11=0.991 and ε12=0.985 for water. 631 

 632 

The AATSR viewing angle (θ) and brightness temperatures (T11 and T12) for the bare soil and 633 

lake cases are shown in Tables 6 and 7, respectively. These data are the average values for 634 

3×3 pixels centered on the validation sites. In both Tables, we also show the AATSR-derived 635 

LSTs (TAATSR) using the three algorithms as in section 3: (i) the operational algorithm, which 636 

assigns biome i=6 and f=0.35-0.40 in March-May for both sites; (ii) the optimized AATSR 637 

algorithm selecting biome i=11 (bare soil) for the bare soil cases and i=14-d/n (lake day/night) 638 

for the lake cases; and (iii) the explicit emissivity-dependent algorithm (Eq. 2) using the 639 

emissivity values derived from Eq. (3) (ε=0.974 and ∆ε=-0.007 with f=0.06 for bare soil, 640 

ε=0.988 and ∆ε=0.006 for water) and the NCEP mean precipitable water for March-May (1.2-641 

1.9 cm). TAATSR values from options (i) and (ii) are quite similar for the bare soil site (Table 642 

6), with differences of a few tenths of K. For the lake site (Table 7), options (ii) and (iii) agree 643 

very well with each other and differ by 1-4 K from option (i). 644 

 645 

Table 8 shows the calculated R-based LST (TR-b) and the difference δ(T11-T12) for each bare 646 

soil and lake validation case from Tables 6 and 7. The precipitable water obtained from the 647 

NCEP profiles (WNCEP) is also shown. When comparing each case, the differences between 648 

δ(T11-T12) values for bare soil and lake are relatively small (root mean square difference of 649 

0.2 K), being compatible with the uncertainty due to small emissivity errors (most likely 650 

affecting the soil). Nearly all the validation cases met the condition -0.6 K<δ(T11-T12)<0.6 K 651 

derived in section 4.2. The outliers are marked with *  in Table 8. This means that, for most 652 
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cases, the NCEP profiles provided a sufficiently accurate description of the atmosphere over 653 

the site at the time of AATSR observations, and the R-based LSTs can be used for AATSR 654 

LST validation. Figure 7 shows the AATSR LST error (δT=TAATSR-TR-b) against δ(T11-T12) 655 

for the three algorithm options and the two sites. For all algorithms and sites, Figure 7 points 656 

out a high correlation between δT and δ(T11-T12), especially for algorithm (iii) in both sites, 657 

and algorithm (ii) in the lake site. The relationship between δT and δ(T11-T12) is similar as in 658 

Figure 5, which gives confidence in the R-based results.  659 

 660 

Considering only the δT values for the cases meeting the above δ(T11-T12) condition, we 661 

computed the average bias, standard deviation and rmse for each algorithm and site, which are 662 

given in Table 9 together with the range of δT. Algorithm (iii) yielded the smallest LST errors 663 

for both sites (rmse=±0.4 K), with δT values within ±1.0 K for all cases. The optimized 664 

algorithm (ii) resulted in small errors for the lake site (rmse=±0.5 K), in good agreement with 665 

the T-based validation in Lake Tahoe shown in Coll et al. (2009a). For the bare soil site, LST 666 

errors were still acceptable (rmse=±1.1 K) and generally met the target accuracy of the 667 

AATSR algorithm (±1.0 K at nighttime and ±2.5 K at daytime). Again, the largest LST errors 668 

were provided by the operational algorithm (i) for the lake cases because of the 669 

misclassification of the site. However, results were better for bare soil (rmse=±1.3 K), with 670 

similar LST errors as the optimized algorithm.  671 

 672 

We did not find any significant long-term temporal variability in the R-based LST errors for 673 

the data used in this section (2003-2008). Comparing the daytime and nighttime results, the 674 

operational algorithm showed lower biases at nighttime, with rmse close to ±1 K for both bare 675 

soil and water. For the optimized algorithm over bare soil, the bias changed from 0.9 K at 676 
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daytime to -0.9 K at nighttime. For Eq. (2), no significant differences were found between 677 

daytime and nighttime at both sites.  678 

 679 

We observed a high dependence of the LST errors of the operational and the optimized 680 

algorithm on the actual AATSR brightness temperature difference T11-T12, a magnitude that 681 

plays a key role in the split-window algorithms (see Eqs. 1 and 2). T11-T12 is a function of 682 

atmospheric precipitable water, but also depends on the temperature profile, LST, surface 683 

emissivity and observation angle. Figure 8 plots the LST errors against T11-T12 for the three 684 

algorithms over bare soil. It appears that AATSR LSTs based on Eq. (1) overestimate 685 

(underestimate) the R-based LSTs for large (small) values of T11-T12, which suggests that 686 

coefficients bf,i in Eq. (1) may be overestimated. For the algorithm of Eq. (2), the LST error 687 

dependence on T11-T12 was much smaller. A few validation cases (32, 34, 38, 40 and 41, all 688 

corresponding to nighttime in March) showed small values of T11-T12 (-0.05 to 0.13 K over 689 

water, see Table 7) and T11 values close to the ground LST, which suggests that they may be 690 

affected by near surface atmospheric temperature inversions (Platt and Prata, 1993). 691 

According to the NCEP profiles, air temperatures at 100-135 m were 9 to 13 K warmer than 692 

T11 in these cases. In these possible inversion conditions, Eq. (2) resulted still in reasonable 693 

LST errors (biases of -0.5 K over water and -0.7 K over bare soil).  694 

 695 

5. CONCLUSIONS 696 

AATSR-derived LSTs were validated over the Valencia test site during the period 2002-2008. 697 

Validation included the conventional T-based method over full-vegetated rice fields, and the 698 

new R-based method (Wan and Li, 2008) over bare soil and lake. T-based validation provides 699 

a direct assessment of the AATSR and algorithm performance since it relies on independently 700 

measured ground LSTs. However, validation sites must be large enough, highly homogeneous 701 
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in surface temperature from ground to satellite scales, and equipped with accurate ground 702 

radiometers for multiple spatial and temporal sampling in an area of at least 1 km2. While it is 703 

necessary to establish and maintain high-quality validation sites, the T-based method is not 704 

suitable for the global validation of satellite LST products because of the large heterogeneity 705 

of land surfaces.  706 

 707 

The R-based method provides an alternative for the semi-operational, long-term validation 708 

and diagnostics of the AATSR LST product at global scale. It could be applied over surfaces 709 

with varied LST and atmospheric regimes where ground LST measurements are not feasible 710 

(forests, partially vegetated surfaces, semi-arid areas, deserts, remote regions, etc.). Accurate 711 

measurements of surface emissivities are necessary. The R-based method requires 712 

atmospheric profiles representing adequately the atmospheric state at the time of the AATSR 713 

observation. This can be checked with the δ(T11-T12) test, which must be applied for each 714 

atmospheric profile at each site in long periods of time to select a range of δ(T11-T12) values 715 

around zero for which the R-based ground LSTs are sufficiently accurate. In this paper, we 716 

used spatially and temporally interpolated NCEP profiles for R-based validation over the 717 

Valencia and Lake Tahoe sites. Local radiosonde measurements and AIRS profiles were also 718 

used at the Valencia site. Another possibility for R-based validation is to select suitable 719 

validation areas around permanent radio sounding stations with launching times close to 720 

AATSR overpasses. 721 

 722 

Results of this paper stress the need for modifications on the operational AATSR LST 723 

algorithm. The most obvious conclusion is that the ancillary data (classification and fractional 724 

vegetation cover maps) must be provided at the same spatial resolution as the AATSR data (1 725 

km2). Otherwise, LST errors from 2 to 5 K can be obtained. When the AATSR algorithm (Eq. 726 
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1) was optimized with i and f values selected for each validation site according to their nature, 727 

LST errors were within the target accuracy of the LST product, with negligible biases and 728 

rmse=±0.5 K for full-vegetated and lake surfaces, and ±1.1 K for bare soil. For the vegetated 729 

surface, we found that the algorithm is very sensitive to the assigned biome since the various 730 

vegetation biomes of Table 1 (with f=1) resulted in rather different biases (AATSR minus 731 

ground) ranging from -0.4 to 2.5 K. Furthermore, LST errors from Eq. (1) showed certain 732 

dependence on the brightness temperature difference T11-T12. 733 

 734 

The explicit emissivity-dependent algorithm (Eq. 2) provided accurate LSTs for all the 735 

biomes studied, with small biases, rmse from ±0.4 to 0.6 K and LST errors within ±1.0 K for 736 

most validation cases. This shows the high accuracy achievable with AATSR data in ideal 737 

conditions. The ancillary data required for Eq. (2) (ε and ∆ε maps at 1 km2 resolution) can be 738 

derived from classification maps and monthly fractional vegetation cover estimated from 739 

visible and near infrared AATSR data. It is the approach adopted by other satellite LST 740 

products such as MODIS and SEVIRI (Wan and Dozier, 1996; PUM_LST, 2008). The land 741 

cover biomes studied here (vegetation, water and bare soil) likely span the emissivity range of 742 

natural surfaces. However, these results only apply to the geographical area used in the study 743 

and the accuracy of the AATSR LST retrievals may be different in other regions and under 744 

different conditions. More validation datasets are necessary especially over deserts where 745 

emissivity may have a larger variability in response to differences in soil composition, texture 746 

and moisture content. 747 
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TABLES 905 

Table 1. Coefficients for the operational AATSR LST algorithm (Eq. 1) for the different 906 

biomes (from Prata, 2002b). 907 

 908 

Biome i avi asi bvi bsi cvi csi 
Broadleaf evergreen trees 1 0.6907 6.0951 3.8129 4.5637 -2.8456 -3.3617 
Broadleaf deciduous trees 2 -0.5393 4.6301 3.6472 4.3652 -2.7218 -3.2155 
Broadleaf and needleleaf 
trees 

3 -0.6885 4.8786 3.6472 4.3652 -2.7218 -3.2155 

Needleleaf-evergreen trees 4 1.0801 1.0801 3.2972 3.2972 -2.2909 -2.2909 
Needleleaf-deciduous trees 5 0.7804 1.491 3.2721 3.8117 -2.3374 -2.7233 
Broadleaf trees with 
groundcover 

6 0.9089 0.0348 3.3511 3.9038 -2.389 -2.7891 

Groundcover 7 0.7994 0.7994 3.5088 3.5088 -2.5065 -2.5065 
Broadleaf shrubs with 
groundcover 

8 1.5662 0.7833 3.1384 3.656 -2.2419 -2.6121 

Broadleaf shrubs with bare 
soil 

9 0.8965 0.8965 3.4867 3.4867 -2.4908 -2.4908 

Dwarf trees, shrubs with 
groundcover 

10 1.0817 1.0817 3.3039 3.3039 -2.2955 -2.2955 

Bare soil 11 0.7075 0.7041 3.7832 3.7832 -2.7868 -2.7868 
Broadleaf-deciduous trees 
with winter wheat 

12 0.881 0.881 3.4106 3.4106 -2.4133 -2.4133 

Perennial land ice 13 1.0801 1.0801 3.2972 3.2972 -2.2909 -2.2909 
Lake-day 14-d -0.0005 -0.0005 2.4225 2.4225 -1.4344 -1.4344 
Lake-night 14-n -0.3658 -0.3658 2.3823 2.3823 -1.3556 -1.3556 
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Table 2. Emissivity classes by surface type and their correspondence with the biomes defined 911 

by the GLOBCOVER (GLC) dataset. 912 

Emissivity class 
GLC 
Class 

Description 

11 Post-flooding or irrigated croplands (or aquatic) 
13 Post-flooding or irrigated herbaceous crops 

180 
Closed to open (>15%) grassland or woody vegetation on regularly flooded or 
waterlogged soil - Fresh, brackish or saline water 

1. Flooded 
vegetation, crops 
and grasslands 

185 
Closed to open (>15%) grassland on regularly flooded or waterlogged soil - 
Fresh or brackish water 

2. Flooded forest 
and shrublands 

170 
Closed (>40%) broadleaved forest or shrubland permanently flooded - Saline or 
brackish water 

14 Rainfed croplands 
15 Rainfed herbaceous crops 
20 Mosaic cropland (50-70%) / vegetation (grassland/shrubland/forest) (20-50%) 
21 Mosaic cropland (50-70%) / grassland or shrubland (20-50%)  
120 Mosaic grassland (50-70%) / forest or shrubland (20-50%)  

140 
Closed to open (>15%) herbaceous vegetation (grassland, savannas or 
lichens/mosses) 

141 Closed (>40%) grassland 
150 Sparse (<15%) vegetation 

3. Croplands and 
grasslands 

151 Sparse (<15%) grassland 
16 Rainfed shrub or tree crops (cash crops, vineyards, olive tree, orchards…) 
30 Mosaic vegetation (grassland/shrubland/forest) (50-70%) / cropland (20-50%)  

130 
Closed to open (>15%) (broadleaved or needleleaved, evergreen or deciduous) 
shrubland (<5m) 

131 Closed to open (>15%) broadleaved or needleleaved evergreen shrubland (<5m) 
134 Closed to open (>15%) broadleaved deciduous shrubland (<5m) 

4. Shrublands 

152 Sparse (<15%) shrubland 
40 Closed to open (>15%) broadleaved evergreen or semi-deciduous forest (>5m) 
50 Closed (>40%) broadleaved deciduous forest (>5m) 
60 Open (15-40%) broadleaved deciduous forest/woodland (>5m) 
90 Open (15-40%) needleleaved deciduous or evergreen forest (>5m) 

5. Broadleaved/ 
needleleaved 
deciduous forest 

91 Open (15-40%) needleleaved deciduous forest (>5m) 

32 Mosaic forest (50-70%) / cropland (20-50%)  
70 Closed (>40%) needleleaved evergreen forest (>5m) 

92 Open (15-40%) needleleaved evergreen forest (>5m) 
100 Closed to open (>15%) mixed broadleaved and needleleaved forest (>5m) 
101 Closed (>40%) mixed broadleaved and needleleaved forest (>5m) 

6. Broadleaved/ 
needleleaved 
evergreen forest 

110 Mosaic forest or shrubland (50-70%) / grassland (20-50%) 
7. Urban area 190 Artificial surfaces and associated areas (Urban areas >50%) 

200 Bare areas 
201 Consolidated bare areas (hardpans, gravels, bare rock, stones, boulders) 
202 Non-consolidated bare areas (sandy desert) 

8. Bare rock 

203 Salt hardpans 

9. Water 210 Water bodies 

10. Snow and ice 220 Permanent snow and ice 
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Table 3. Coefficients for the vegetation cover method emissivity (Eq. 3) for AATSR bands at 914 

11 and 12 µm based on the classes shown in Table 2. 915 

 916 

Emissivity class 11 µµµµm 12 µµµµm 
 εv εg <dε> εv εg <dε> 
1. Flooded 
vegetation, crops 
and grasslands 

0.983±0.005 
0.970±0.005 

(soil) 
0 0.989±0.005 

0.977±0.004 
(soil) 

0 

  
0.991±0.001 

(water) 
0  

0.985±0.001 
(water) 

0 

2. Flooded forest 
and shrublands 
 

0.981±0.008 
0.970±0.005 

(soil) 
0.014±0.004 

(soil) 
0.982±0.009 

0.977±0.004 
(soil) 

0.010±0.003 
(soil) 

  
0.991±0.001 

(water) 
0.004±0.001 

(water) 
 

0.985±0.001 
(water) 

0.007±0.002 
(water) 

3. Croplands and 
grasslands 

0.983±0.005 0.970±0.005 0 0.989±0.005 0.977±0.004 0 

4. Shrublands 0.981±0.008 0.970±0.005 0.014±0.004 0.982±0.009 0.977±0.004 0.010±0.003 
5. Broadleaved/ 
needleleaved 
deciduous forest 

0.973±0.005 0.970±0.005 0.019±0.006 0.973±0.005 0.977±0.004 0.015±0.004 

6. Broadleaved/ 
needleleaved 
evergreen forest 

0.989±0.005 0.970±0.005 0.019±0.005 0.991±0.005 0.977±0.004 0.015±0.004 

 Effective emissivity, 11 µµµµm Effective emissivity, 12 µµµµm 
7. Urban area 0.969±0.006 0.976±0.004 
8. Bare rock 0.93±0.05 0.95±0.05 
9. Water 0.991±0.001 0.985±0.001 
10. Snow and ice 0.990±0.004 0.971±0.014 

 917 

 918 

 919 

 920 

 921 



 42 

Table 4. Ground-measured LSTs (Tg) and uncertainties (σ) over full-vegetated rice fields in 922 

the Valencia test site, and concurrent AATSR brightness temperatures in the 11 and 12 µm 923 

bands, nadir view. θ is the satellite zenith viewing angle. The AATSR-derived LSTs (TAATSR) 924 

using different options (see text) are shown in the last three columns. 925 

 926 

case date (d/m/y) Tg ± σσσσ (ºC) θθθθ (º) T11 (ºC) T12 (ºC) 
operational 
TAATSR (ºC) 

optimized 
TAATSR (ºC) 

Eq. (2) 
TAATSR (ºC) 

1 10/07/02 28.6±0.6 3.7 25.04 22.99 32.1 28.6 28.8 
2 13/07/02 27.6±0.9 13.8 22.28 19.26 31.8 28.3 28.3 
3 26/07/02 27.9±0.6 1.11 23.39 20.68 32.0 28.6 28.6 
4 08/08/02 26.5±0.7 16.2 20.29 17.31 29.4 26.5 26.2 
5 14/08/02 28.5±0.5 3.9 23.69 21.52 30.8 27.7 27.7 
6 17/08/02 29.1±0.6 13.91 22.81 19.84 32.0 28.7 28.7 
7 05/09/02 28.0±0.8 19.06 24.10 22.03 31.2 27.9 27.9 
8 08/07/03 28.3±0.7 11.13 25.30 23.03 33.1 29.4 29.5 
9 11/07/03 29.1±0.7 1.20 27.03 25.50 33.0 29.2 29.9 
10 14/07/03 28.6±0.6 8.66 24.73 22.39 32.7 29.0 29.1 
11 24/07/03 28.8±0.6 16.25 24.68 22.36 32.5 28.9 29.0 
12 30/07/03 28.9±0.6 3.74 23.44 20.63 32.5 28.9 28.9 
13 12/08/03 31.3±0.6 11.13 28.10 26.51 33.9 30.3 31.0 
14 28/06/04 29.2±0.6 8.66 26.41 24.36 34.0 29.8 30.2 
15 08/07/04 25.7±0.6 16.33 23.15 21.60 28.8 25.8 26.0 
16 14/07/04 27.2±0.7 3.74 22.45 19.78 31.1 27.7 27.6 
17 27/07/04 27.7±0.4 11.05 25.02 23.35 31.2 27.8 28.1 
18 30/07/04 27.8±0.4 1.19 23.37 20.58 32.1 28.8 28.8 
19 12/08/04 28.4±0.6 16.25 25.50 23.98 31.0 27.9 28.3 
20 12//07/05 27.0±0.6 11.13 24.64 23.04 30.6 27.1 27.6 
21 21/07/05 28.5±0.6 18.97 25.40 23.63 31.8 28.4 28.6 
22 28/07/05 28.8±0.5 16.33 24.75 22.67 32.0 28.5 28.6 
23 06/08/05 28.0±0.5 13.66 25.35 23.68 31.0 28.1 28.4 
24 03/07/06 29.5±0.6 8.7 27.50 25.90 33.6 29.8 30.4 
25 22/07/06 29.5±0.5 13.7 26.39 24.44 33.3 29.6 30.0 
26 04/07/07 27.8±0.9 3.7 23.40 20.63 32.3 28.8 28.8 
27 20/07/07 27.8±0.4 1.3 24.03 21.65 32.0 28.4 28.5 
28 26/07/07 27.5±0.4 19.1 24.70 22.90 31.2 27.8 28.0 
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Table 5. Uncertainty (in K) of the simulated temperatures in the R-based method (TR-b, T11, 929 

T12, and T11-T12) for different sources of uncertainty (see text). 930 

 931 

 TR_b T11 T12 T11-T12 
W (10%) 0.33 0.26 0.39 0.13 
Tair (1 K) 0.28 0.21 0.33 0.12 
MODTRAN 4 0.43 0.33 0.51 0.18 

εεεε (0.005) 0.35 0.28 0.22 0.36 
Total (rss) 0.71 0.55 0.76 0.43 

 932 

 933 
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Table 6. R-based validation cases over bare soil in the Valencia test site. The AATSR-derived 934 

LSTs (TAATSR) using different options (see text) are shown in the last three columns. 935 

case Date (d/m/y) 
Time 

(UTC) θθθθ (º) T11 (ºC) T12 (ºC) 
operational 
TAATSR (ºC) 

optimized 
TAATSR (ºC) 

Eq. (2) 
TAATSR (ºC) 

1 09/03/2003 10:25 7.0 11.49 10.46 15.2 15.0 14.5 
2 12/03/2003 10:31 4.1 12.76 12.06 15.7 15.4 15.3 
3 25/03/2003 10:22 12.5 11.45 9.98 16.4 16.2 15.1 
4 10/04/2003 10:19 18.0 13.18 11.91 17.7 17.4 16.5 
5 02/05/2003 10:28 1.3 15.25 13.71 20.6 20.2 18.9 
6 21/05/2003 10:31 4.1 17.41 15.61 23.5 23.1 21.6 
7 12/03/2004 10:28 1.4 11.18 10.05 15.2 15.0 14.3 
8 03/04/2004 10:37 15.2 12.33 11.04 16.8 16.6 15.7 
9 13/04/2004 10:22 12.4 12.63 11.39 17.0 16.8 15.9 
10 06/05/2005 10:28 1.4 16.99 15.91 21.2 20.6 19.9 
11 25/05/2005 10:31 4.1 19.16 17.72 24.4 23.8 22.7 
12 14/03/2006 10:22 12.5 11.89 10.93 15.5 15.2 14.8 
13 30/03/2006 10:19 18.2 13.45 12.13 18.1 17.8 16.9 
14 18/04/2006 10:22 12.5 14.56 12.85 20.3 20.0 18.6 
15 21/04/2006 10:28 1.5 14.64 12.95 20.3 20.0 18.6 
16 26/05/2006 10:28 1.5 17.36 15.61 23.3 22.9 21.4 
17 29/05/2006 10:34 9.6 19.01 17.51 24.4 23.8 22.6 
18 05/03/2007 10:34 9.6 12.68 11.71 16.3 16.1 15.6 
19 15/03/2007 10:19 18.0 12.16 10.98 16.4 16.1 15.4 
20 18/03/2007 10:25 6.9 13.08 12.02 17.0 16.7 16.1 
21 03/04/2007 10:22 12.6 11.97 10.44 17.1 16.9 15.7 
22 08/05/2007 10:22 12.5 16.88 15.58 21.7 21.2 20.2 
23 14/05/2007 10:34 9.6 17.14 15.81 22.0 21.5 20.5 
24 30/05/2007 10:31 4.1 17.85 16.29 23.4 22.8 21.6 
25 02/03/2008 10:25 7.0 13.28 12.28 17.0 16.7 16.2 
26 05/03/2008 10:31 4.1 12.34 11.42 15.8 15.6 15.2 
27 18/03/2008 10:22 12.5 12.74 11.66 16.7 16.4 15.8 
28 21/03/2008 10:28 1.4 11.55 9.84 17.1 17.0 15.6 
29 03/04/2008 10:19 18.0 13.92 12.80 18.1 17.7 17.0 
30 25/04/2008 10:28 1.5 12.65 11.30 17.3 17.1 16.1 
31 09/03/2003 21:40 16.7 8.94 8.70 10.5 10.3 11.0 
32 19/03/2003 21:26 10.9 4.77 4.73 5.5 5.6 6.7 
33 25/03/2003 21:37 11.1 1.65 0.82 4.3 4.7 4.4 
34 03/03/2004 21:26 11.0 4.84 4.68 5.9 6.0 6.8 
35 22/03/2004 21:29 5.4 6.67 6.19 8.7 8.7 9.0 
36 13/04/2004 21:38 11.1 7.45 7.18 9.0 8.9 9.5 
37 15/05/2004 21:32 0.1 12.54 11.49 16.4 16.1 15.5 
38 07/03/2005 21:29 5.5 0.71 0.70 1.1 1.4 2.6 
39 26/03/2005 21:32 0.1 11.90 11.44 14.2 13.8 14.2 
40 12/03/2007 21:29 5.5 5.26 5.02 6.6 6.6 7.3 
41 15/03/2007 21:35 5.5 6.53 6.42 7.6 7.5 8.5 
42 16/04/2007 21:29 5.4 10.12 9.33 13.2 13.0 12.7 
43 19/04/2007 21:35 5.6 11.42 10.64 14.5 14.3 14.0 
44 08/05/2007 21:37 11.1 15.63 14.92 18.8 18.3 18.1 
45 02/03/2008 21:40 16.6 11.46 11.37 12.7 12.4 13.4 
46 18/03/2008 21:37 11.1 10.91 10.17 13.9 13.6 13.5 
47 31/03/2008 21:29 5.5 11.09 10.65 13.3 13.0 13.3 
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Table 7. R-based validation cases over Albufera Lake in the Valencia test site. The AATSR-937 

derived LSTs (TAATSR) using different options (see text) are shown in the last three columns. 938 

case Date (d/m/y) 
Time 

(UTC) θθθθ (º) T11 (ºC) T12 (ºC) 
operational 
TAATSR (ºC) 

optimized 
TAATSR (ºC) 

Eq. (2) 
TAATSR (ºC) 

1 09/03/2003 10:25 7.5 11.91 10.91 15.6 13.2 13.3 
2 12/03/2003 10:31 3.5 13.01 12.32 15.9 13.8 14.0 
3 25/03/2003 10:22 13.0 12.04 10.62 16.9 13.9 14.0 
4 10/04/2003 10:19 18.5 13.75 12.48 18.3 15.4 15.5 
5 02/05/2003 10:28 1.9 16.05 14.55 21.3 18.0 18.2 
6 21/05/2003 10:31 3.5 17.85 15.95 24.3 20.4 20.7 
7 12/03/2004 10:28 1.9 9.45 7.67 15.1 11.9 12.1 
8 03/04/2004 10:37 14.6 11.95 10.69 16.3 13.6 13.7 
9 13/04/2004 10:22 12.9 12.50 11.22 17.0 14.2 14.3 
10 06/05/2005 10:28 1.9 17.45 16.35 21.7 18.8 19.0 
11 25/05/2005 10:31 3.5 18.82 17.44 23.9 20.6 20.8 
12 14/03/2006 10:22 13.0 11.91 10.96 15.5 13.1 13.2 
13 30/03/2006 10:19 18.7 13.64 12.29 18.4 15.5 15.5 
14 18/04/2006 10:22 13.0 14.81 13.16 20.4 17.0 17.2 
15 21/04/2006 10:28 2.0 14.83 13.02 20.8 17.2 17.5 
16 26/05/2006 10:28 2.0 17.15 15.36 23.2 19.5 19.8 
17 29/05/2006 10:34 9.0 19.09 17.52 24.7 21.1 21.4 
18 05/03/2007 10:34 9.1 12.91 11.94 16.6 14.2 14.2 
19 15/03/2007 10:19 18.6 12.33 11.14 16.6 13.9 14.0 
20 18/03/2007 10:25 7.5 12.92 11.91 16.7 14.2 14.3 
21 03/04/2007 10:22 13.1 12.04 10.51 17.1 14.1 14.2 
22 08/05/2007 10:22 13.0 16.76 15.49 21.5 18.4 18.5 
23 14/05/2007 10:34 9.0 16.54 15.36 21.0 18.0 18.2 
24 30/05/2007 10:31 3.5 17.99 16.33 23.8 20.2 20.4 
25 02/03/2008 10:25 7.5 13.49 12.53 17.2 14.7 14.8 
26 05/03/2008 10:31 3.5 12.19 11.21 15.8 13.5 13.5 
27 18/03/2008 10:22 13.1 12.89 11.82 16.8 14.3 14.4 
28 21/03/2008 10:28 2.0 11.05 9.28 16.7 13.5 13.7 
29 03/04/2008 10:19 18.6 14.32 13.23 18.4 15.7 15.8 
30 25/04/2008 10:28 2.0 11.32 9.91 16.1 13.2 13.3 
31 09/03/2003 21:40 16.5 8.11 7.94 9.4 8.2 8.5 
32 19/03/2003 21:26 11.2 4.36 4.41 4.8 4.0 4.6 
33 25/03/2003 21:37 10.9 6.44 5.81 8.8 7.1 7.3 
34 03/03/2004 21:26 11.2 3.68 3.65 4.3 3.5 4.0 
35 22/03/2004 21:29 5.7 5.78 5.37 7.6 6.1 6.4 
36 13/04/2004 21:38 10.9 7.56 7.26 9.2 7.8 8.1 
37 15/05/2004 21:32 0.1 11.33 10.53 14.5 12.4 12.5 
38 07/03/2005 21:29 5.7 0.04 0.04 0.4 -0.3 0.3 
39 26/03/2005 21:32 0.2 11.59 11.12 13.9 12.2 12.3 
40 12/03/2007 21:29 5.7 4.56 4.43 5.5 4.5 5.0 
41 15/03/2007 21:35 5.3 5.73 5.68 6.6 5.6 6.1 
42 16/04/2007 21:29 5.7 9.57 8.87 12.3 10.4 10.6 
43 19/04/2007 21:35 5.4 11.59 10.81 14.7 12.6 12.7 
44 08/05/2007 21:37 10.9 14.39 13.84 17.0 15.2 15.2 
45 02/03/2008 21:40 16.4 11.03 10.87 12.5 11.2 11.4 
46 18/03/2008 21:37 10.9 10.27 9.57 13.1 11.1 11.3 
47 31/03/2008 21:29 5.7 9.96 9.63 11.8 10.3 10.5 
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Table 8. Calculated R-based LST (TR-b) and difference δ(T11-T12) for each validation case in 940 

Table 6 (bare soil) and Table 7 (lake). WNCEP is the precipitable water from NCEP profiles. 941 

Cases not meeting -0.6 K<δ(T11-T12)<0.6 K are marked with * . 942 

 bare soil    lake    
case WNCEP (cm) TR-b (ºC) δδδδ(T11-T12) (K) TR-b (ºC) δδδδ(T11-T12) (K) 

1 0.98 14.4 0.47 13.1 0.13 
2 0.84 15.5 0.29 13.9 0.09 
3 1.23 14.7 0.54 13.6 0.24 
4 1.46 16.8 0.13 15.7 -0.19 
5 2.53 18.4 0.29 18.1 -0.13 
6 1.83 21.1 0.37 19.9 0.26 
7 1.68 13.8 0.40 10.1 1.05*  
8 1.15 15.6 0.29 13.3 0.16 
9 0.81 15.9 0.32 13.9 0.22 
10 1.16 20.2 0.18 18.9 -0.05 
11 1.54 22.8 0.11 20.6 -0.14 
12 1.09 14.8 0.26 13.2 0.10 
13 2.71 17.5 -0.44 16.3 -0.67*  
14 1.77 18.5 0.29 17.1 -0.09 
15 2.11 18.2 0.31 17.0 0.17 
16 2.20 21.4 0.15 19.5 -0.02 
17 3.34 23.3 -0.49 22.2 -0.67*  
18 1.30 15.9 0.12 14.5 -0.13 
19 1.13 15.4 0.16 13.8 0.03 
20 1.28 16.4 0.10 14.4 -0.13 
21 1.33 15.5 0.32 13.9 0.17 
22 1.57 20.1 0.30 18.2 0.06 
23 1.37 20.6 0.23 18.1 -0.09 
24 2.22 21.3 0.39 20.0 0.22 
25 1.62 16.0 0.40 14.8 0.04 
26 0.55 15.7 -0.15 13.5 -0.19 
27 1.02 15.8 0.21 14.2 0.01 
28 1.45 15.1 0.48 12.7 0.38 
29 1.48 16.8 0.36 15.6 0.12 
30 1.69 15.0 0.91*  11.9 0.93*  
31 0.85 11.6 -0.20 8.9 -0.39 
32 0.81 7.3 -0.32 5.1 -0.54 
33 1.53 3.2 0.91*  7.3 -0.07 
34 0.53 7.5 -0.29 4.4 -0.47 
35 0.89 9.6 -0.19 6.8 -0.36 
36 0.93 10.2 -0.24 8.5 -0.41 
37 1.60 15.9 0.01 12.8 -0.32 
38 0.38 3.3 -0.40 0.8 -0.48 
39 1.68 15.3 -0.63*  13.3 -0.81*  
40 1.24 7.9 -0.26 5.4 -0.49 
41 0.87 9.1 -0.31 6.5 -0.48 
42 1.80 13.1 -0.05 10.9 -0.38 
43 2.42 14.3 -0.29 13.1 -0.55 
44 1.80 18.2 0.06 15.2 -0.17 
45 1.59 13.5 -0.08 11.5 -0.18 
46 1.15 13.9 -0.08 11.4 -0.26 
47 1.06 14.3 -0.53 11.2 -0.73*  

 943 
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Table 9. Statistics of the R-based validation (δT=TAATSR-TR-b) for the AATSR-derived LSTs 944 

using the three options (see text) over the bare soil and lake sites. 945 

 946 

LST 
algorithm 

operational optimized Eq. (2) 

site bare soil lake bare soil lake bare soil lake 
bias (K) 0.6 2.2 0.3 -0.2 -0.2 0.0 

std. dev. (K) 1.2 1.3 1.1 0.4 0.4 0.4 
rmse (K) 1.3 2.5 1.1 0.5 0.4 0.4 

min. δδδδT (K)  -2.2 -0.4 -1.9 -1.1 -0.8 -0.5 

max. δδδδT (K)  2.4 4.4 2.0 0.7 0.6 0.9 

 947 

 948 
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FIGURE CAPTIONS 949 

Figure 1. Mean emissivity (ε=(ε11+ε12)/2) and emissivity difference (∆ε=ε11-ε12) in AATSR 950 

bands at 11 and 12 µm derived from Eq. (3) over East Spain on March and July, 2007. 951 

Clouds and water are masked in white. 952 

Figure 2. (a) Photograph showing part of the Valencia test site in July. (b) RGB composite of 953 

ASTER bands 2 (0.66 µm), 3 (0.81 µm) and 1 (0.56 µm) showing the Valencia rice 954 

field area and environs on August 3, 2004. (c) RGB composite of AATSR bands at 955 

0.87, 0.66 and 0.55 µm over Valencia on July 11, 2003. 956 

Figure 3. AATSR-derived LST (TAATSR) against ground-measured LST (Tg) for the three 957 

LST retrieval options. The dashed line is the 1:1 line. 958 

Figure 4. Difference between AATSR-derived and ground-measured LST (TAATSR-Tg) as a 959 

function of time. 960 

Figure 5. Difference between ground-measured and R-based LSTs against δ(T11-T12) for the 961 

datasets and atmospheric profiles indicated. The linear regression for all data is shown. 962 

Figure 6. Difference between R-based LSTs obtained from local radiosonde and NCEP/AIRS 963 

profiles against a) precipitable water difference, and b) difference in T11-T12 simulated 964 

from local radiosonde and NCEP/AIRS profiles. 965 

Figure 7. AATSR-derived LST minus R-based LST calculated with NCEP profiles against 966 

δ(T11-T12) in the bare soil and lake sites for a) the operational algorithm, b) the 967 

optimized algorithm, and c) the explicit emissivity-dependent algorithm. 968 

Figure 8. AATSR-derived LST minus R-based LST calculated with NCEP profiles against 969 

the actual AATSR brightness temperature difference T11-T12 in the bare soil site for the 970 

operational, the optimized and the explicit emissivity-dependent algorithm (Eq. 2). The 971 

solid lines are the linear regressions for each algorithm. 972 
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